
  

 

 

   

  

    

 

UniversalConfigurationManager Reference Manual 1.4  Page 1 of 21 

 

 

 

Universal 

Configuration 

Manager 
 

 

 

Reference Manual 
 

 

 

 

 

 

 

 

 

 

 

 

Product Info 

Product Manager Sven Meier 

Author(s) Sven Meier 

Reviewer(s) - 

Version 1.4 

Date 09.07.2020 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 2 of 21 

Copyright Notice 

Copyright © 2025 NetTimeLogic GmbH, Switzerland. All rights reserved. 

Unauthorized duplication of this document, in whole or in part, by any means, is 

prohibited without the prior written permission of NetTimeLogic GmbH, Switzer-

land.  

All referenced registered marks and trademarks are the property of their respective 

owners 

 

Disclaimer 

The information available to you in this document/code may contain errors and is 

subject to periods of interruption. While NetTimeLogic GmbH does its best to 

maintain the information it offers in the document/code, it cannot be held respon-

sible for any errors, defects, lost profits, or other consequential damages arising 

from the use of this document/code.  

 
NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-

UCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES 

WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES, 

INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-

ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE 

HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO 

EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, 

INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY 

DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS 

DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS 

PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH 

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  

 

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION 

THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-

MENT/CODE. 

  



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 3 of 21 

Overview 

NetTimeLogic’s Universal Configuration Manager is an open source solution for 

configuring and supervising all NetTimeLogic’s IP cores. It allows to configure the 

configuration registers of the individual cores and allows to supervise the status of 

the cores. Some cores allow real-time monitoring of status information and can 

show this in a graph (e.g. PTP). The connection between the host and the target is 

done via UART (often USB USART) or 100Mbit Ethernet and has its own protocol 

running on it. The GUI can detect all instantiated cores in the systems and their AXI 

base addresses at runtime and will provide tabs for the individual cores. The solu-

tion consists of two parts, an FPGA part and a GUI part. The FPGA part allows the 

access to the registers, provides information about the cores in the system and 

makes a protocol and interface conversion between UART/Ethernet and AXI. The 

GUI part is the frontend for the user, it abstracts the communication interface and 

the individual registers and does the data presentation. Multiple instances of the 

tool can run in parallel and allow configuration and monitoring of multiple systems. 

Multiple instances of the same core in a system are handled and can be configured 

individually. 

 

 

Key Features: 

• Open Source GUI 

• HW/SW co-solution 

• Configuration of the cores via UART or Ethernet 

• Status monitoring of the cores via UART or Ethernet 

• Register access to all AXI addresses in the system (also 3rd party) 

• Auto detection of available cores and base addresses 

• Proprietary protocol for the UART/Ethernet connection, can also be done 

from a terminal (UART only) 

• Multiple systems and multiple cores in a system support 

• Loading of configurations from a file (plain ASCII) 

• Logging of all accesses 

• QT based 

  



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 4 of 21 

Revision History 

This table shows the revision history of this document. 

 

Version Date Revision 

0.1 23.02.2017 First draft 

1.0 16.08.2017 First release 

1.1 17.09.2018 Added Ethernet interface 

1.2 11.10.2018 

Changed to QT 5.11.2 and added code part which 

shall be modified for different QT versions or installa-

tion paths 

1.3 15.11.2018 Added AXI timeout 

1.4 09.07.2020 Added reset command 

Table 1:  Revision History 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 5 of 21 

Content 

1 INTRODUCTION 7 

1.1 Context Overview 7 

1.2 Function 7 

1.3 FPGA Architecture 8 

1.4 SW Architecture 9 

2 INTERFACE AND PROTOCOL BASICS 12 

2.1 UART Interface 12 

2.2 ETHERNET Interface 12 

2.3 Protocol 12 

2.3.1 Write Command and Write Response 13 

2.3.2 Read Command and Write Response 14 

2.3.3 Connect Command and Connect Response 15 

2.3.4 Reset Command and Reset Response 16 

2.3.5 Error Response 16 

3 DELIVERY STRUCTURE 18 

4 RUN 19 

5 BUILD 19 

5.1 Dynamic Build 19 

5.2 Static Build 19 

 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 6 of 21 

Definitions 

Definitions 

Counter Clock 
A counter based clock that count in the period of its fre-

quency in nanoseconds 

PI Servo Loop 
Proportional–Integral servo loop, allows for smooth correc-

tions 

Offset Phase difference between clocks 

Drift Frequency difference between clocks 

Table 2:  Definitions 
 

Abbreviations 

Abbreviations 

AXI AMBA4 Specification (Stream and Memory Mapped) 

IRQ Interrupt, Signaling to e.g. a CPU 

PPS Pulse Per Second 

TS Timestamp 

CLK Clock 

CC Counter Clock 

ETH Ethernet 

TB Testbench 

LUT Look Up Table 

FF Flip Flop 

PWM Pulse Width Modulation 

RAM Random Access Memory 

ROM Read Only Memory 

FPGA Field Programmable Gate Array 

VHDL Hardware description Language for FPGA’s 

Table 3:  Abbreviations 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 7 of 21 

1 Introduction 

1.1 Context Overview 

NetTimeLogic’s Universal Configuration Manager is meant as a solution for config-

uring and supervising all NetTimeLogic’s IP cores. It allows to configure the config-

uration registers of the individual cores and allows to supervise the status of the 

cores. The connection between the host and the target is done either via UART 

(often USB USART) or 100Mbit Ethernet and has its own protocol running on it. 

The solution consists of two parts, an FPGA part and a GUI part. The FPGA part 

allows the access to the registers, provides information about the cores in the 

system and makes a protocol and interface conversion between UART/Ethernet 

and AXI. The GUI part is the frontend for the user, it abstracts the communication 

interface and the individual registers and does the data representation. Multiple 

instances of the tool can run in parallel and allow configuration and monitoring of 

multiple systems. Multiple instances of the same core in a system are handled and 

can be configured individually. 

 

Host FPGA

AXI4 Lite Slave

CONF
CONTROL

A
X

I4
 L

it
e

 M
a

st
e

r

CLOCK
Adjustable Clock

PPS
SLAVE

AXI4 Lite Slave AXI4 Lite Slave

PPS
MASTER

PPS
PPS

TimeAdj

AXI4 Interconnect

UART or
ETH

 

Figure 1:  Context Block Diagram 
 

1.2 Function 

The Universal Configuration Manager allows to read and write registers via an 

FPGA configuration block which converts between a proprietary UART/Ethernet 

protocol and AXI. It first tries to connect to the configuration core and asks for a 

specific acknowledge (if in UART mode also baudrate). If it received the expected 

acknowledge it reads the configuration ROM in the configuration core to get the 

information about the instantiated cores like base address and instance number. 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 8 of 21 

This register map is then shown and the individual tabs of the instantiated cores 

are shown. Then in the individual tabs the registers can be written and read. The 

registers are shown as fields with a meaningful value and therefore are abstracted 

from the individual addresses and bits. 

For some of the cores also an auto-refresh functionality is available which polls the 

registers in a fixed interval and updates graphs if available. 

 

1.3 FPGA Architecture 

The core is split up into different functional blocks for reduction of the complexity, 

modularity and maximum reuse of blocks. The interfaces between the functional 

blocks are kept as small as possible for easier understanding of the core. 

 

ConfSlaveCore

AXIS
UART or

ETHERNET
CONF
PROC

AXI
INTERC

REGISTER
SET

A
X

I4
 L

it
e

 M
a

st
e

r

A
X

I4
 L

it
e

 M
a

st
e

r

A
X

I4
 L

it
e

 S
la

ve
A

XI
4 

Li
te

 M
as

te
r

A
XI

4 
Li

te
 S

la
ve

CONFIG
ROM

UART or
ETH

UniversalConfigurationManager

AXI4 Lite Slave

CLOCK
Adjustable Clock

PPS
SLAVE

AXI4 Lite Slave AXI4 Lite Slave

PPS
MASTER

PPS
PPS

TimeAdj

AXI4 Interconnect

 

Figure 2:  FPGA Architecture Block Diagram 
 

UART or ETHERNET 

This block converts the UART or Ethernet data stream into AXIS and vice versa. 

 

Conf Processor 

This block parses the protocol data received from the UART/ETH block, converts it 

into AXI access and generates responses towards the host via the UART/ETH 

block. 

 

AXI interconnect 

This block connects the internal Registerset with the AXI Master in the Conf Pro-

cessor and connects to an external AXI interconnect for accessing all other regis-

ters. 

 

Register Set 

This block allows reading the configuration from the Config ROM. 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 9 of 21 

 

Config ROM 

This block stores all the information about the instantiated slaves in the ROM. The 

configuration has to be passed to the Conf Slave core via a structure via generics. 

 

1.4 SW Architecture 

The core is split up into different functional blocks for reduction of the complexity, 

modularity and maximum reuse of blocks. The interfaces between the functional 

blocks are kept as small as possible for easier understanding of the core. 

 

UCM

UCM 
UI

Config
Tab

Config Tab
UI

Advanced
Tab

Advanced 
Tab UI

PPS Slave
Tab

PPS Slave 
Tab UI

CLK Clock
Tab

CLK Clock 
Tab UI

...
Tab

  Tab
UI

Com
Lib

Main

Core Config

 

Figure 3:  Software Architecture Block Diagram 
 

Main 

This block is the programs entry point, the only thing it does is to instantiate a 

Universal Configuration Manager class. 

 

 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 10 of 21 

 

Universal Configuration Manager (UCM) 

This class has references to all other Tabs, the Communication Lib, the Core Config 

and to the Universal Configuration Manager UI. It is the interconnection block for all 

other Tabs. 

 

Universal Configuration Manager UI 

This is the UI of the UCM, it basically is only the main window of the UI with an 

empty Tab. 

 

Communication Lib 

This class gives access to the registers and abstract the underlying protocol and 

UART or Ethernet interface. When a connection is opened the library checks with a 

connect command if a counterpart is available on this link. 

 

Core Config 

This class is a list of the cores as read from the Config ROM. 

 

Config Tab 

This class has a reference to the Config Tab UI. It is the first of the only Tabs which 

are active at the beginning. Its purpose is to open and close a connection to the 

target. It lists all available UART ports in the system so the user can choose to 

which system he wants to connect. When it opens a connection it immediately 

reads the Config ROM in the FPGA. Based on the information in the Config ROM it 

adds the corresponding core Tabs to the main window UI Tab and enables the 

tabs. Also the information from the ROM is stored in the Core Config and shown in 

the Address Map window. When the connection is closed all Tabs are removed 

from the main window UI Tab and disabled. When the connection is closed, no read 

and writes to registers is possible anymore 

 

Config Tab UI 

This is the UI of the Config Tab, it contains all GUI elements used for the Config 

Tab. 

 

Advanced Tab 

This class has a reference to the Advanced Tab UI. It is the second of the only Tabs 

which are active at the beginning. Its purpose is to log all activities (transfers) in 

the system and allows to read and apply a configuration file for stored configs. In 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 11 of 21 

addition, it gives access to any AXI register in the system. Be aware that accessing 

an address which is not available (or doesn’t respond) in the system will lead to a 

blocking system since there is no timeout on AXI and the AXI master will block the 

AXI Bus infinitely. It also allows to load and save config files and to save log files 

 

Advanced Tab UI 

This is the UI of the Advanced Tab, it contains all GUI elements used for the Ad-

vanced Tab. 

 

CLK Clock Tab, PPS Slave Tab, … Tab 

This class has a reference to the … Tab UI. These are the Tabs containing the func-

tionalities according to the cores they represent. 

 

CLK Clock Tab UI, PPS Slave Tab UI, … Tab UI 

This is the UI of the … Tab, it contains all GUI elements used for specific core’s 

functionality. 

 

 

  



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 12 of 21 

2 Interface and Protocol Basics 

2.1 UART Interface 

For the communication between the FPGA and the Host a UART interface can be 

used. Often this UART interface is done via an USB UART. The following parame-

ters are used: 

• 1 Start bit 

• 8 Data bits 

• 1 Stop bit 

• No Parity bit 

• Baudrate 115200 

2.2 ETHERNET Interface 

For the communication between the FPGA and the Host also an 100Mbit Ethernet 

interface can be used. The following parameters are used: 

• 100Mbit only 

• Access via Broadcast or Unicast MAC and IP 

• IPv4 

• TTL: 128 

• UDP Port: 0xBEEF 

 

Data is encapsulated into a UDP/IPv4 frame as one command per frame. It also 

expects ASCII character and does the padding and cut off of the padding. 

2.3 Protocol 

The protocol run on the UART and Ethernet is a proprietary protocol defined by 

NetTimeLogic. 

It is a simple protocol with no retransmission and therefore also not failsafe. The 

protocol uses ASCII character so it can also be entered directly from a terminal. 

A couple of extra characters are used in the Data stream to allow synchronization 

of start and end of the commands as well as separation of the individual fields. 

The command always starts with a ‘$’ character followed by a two-character com-

mand code. Then individual fields can follow, each field is separated by a ‘,’ charac-

ter. After the fields a ‘*’ character indicates the end of the command and that a 

checksum is followed, the two characters of checksum are followed. The command 

is ended with a <CR><LF> (carriage return and line feed) combination. The check-

sum is optional for the host and can be left away, in this case the ‘*’ character is 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 13 of 21 

also left away. The checksum XOR combines all received bytes between the ‘$’ and 

‘*’ characters (not including) starting with 0x00 as starting value. If a checksum is 

present, the checksum is checked and an error is signaled by the FPGA to the host 

if the checksum is not correct and the command ignored. 

The protocol engine in the FPGA allows empty lines and comments be transferred 

also via UART. A comment line starts with “--“ characters. This functionality, and 

the fact that the checksum is optional can be used if the whole content of a file 

containing not only commands but also comments is copied to a terminal. The 

Universal Configuration Manager will always send only commands from the host to 

the FPGA and always with a checksum. 

2.3.1 Write Command and Write Response  

The two messages described here are used for writing a register. 

 

The format of the write command looks the following: 

 

$WC,<ADDRESS>,<DATA>*<CHECKSUM><CR><LF> 

 

e.g. : $WC,0x50000000,0x40000001*14 

 

A write command is always issued by the host. 

The write command starts with the command identifier of the two characters 

“WC”. Following the identifier, the 32bit AXI address to be written in hexadecimal 

format is added. Following the address, 32bit of write data in hexadecimal format is 

added. Both address and data have to start with “0x” followed by 8 hexadecimal 

characters.  

 

A write command will always trigger a write response in the FPGA. If something 

goes wrong an error response is sent containing an error code. 

 

The format of the write response looks the following: 

 

$WR,<ADDRESS>*<CHECKSUM><CR><LF> 

 

e.g. : $WR,0x50000000*64 

 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 14 of 21 

A write response is always issued by the FPGA. 

The write response starts with the command identifier of the two characters “WR”. 

Following the identifier, the 32bit AXI address written in hexadecimal format is 

added which is the address which was written in the FPGA (as in the examples, 

0x50000000). The address has to start with “0x” followed by 8 hexadecimal 

characters.  

 

2.3.2 Read Command and Write Response  

The two messages described here are used for reading a register. 

 

The format of the read command looks the following: 

 

$RC,<ADDRESS>*<CHECKSUM><CR><LF> 

 

e.g. : $RC,0x50000000*70 

 

A read command is always issued by the host. 

The read command starts with the command identifier of the two characters “RC”. 

Following the identifier, the 32bit AXI address to be read in hexadecimal format is 

added. The address has to start with “0x” followed by 8 hexadecimal characters.  

 

A read command will always trigger a read response in the FPGA. If something 

goes wrong an error response is sent containing an error code. 

 

The format of the read response looks the following: 

 

$RR,<ADDRESS>,<DATA>*<CHECKSUM><CR><LF> 

 

e.g. : $RR,0x50000000,0x00000001*04 

 

A read response is always issued by the FPGA. 

The read response starts with the command identifier of the two characters “RR”. 

Following the identifier, the 32bit AXI address read in hexadecimal format is added 

which is the address which was read in the FPGA (as in the examples, 

0x50000000). Following the address, 32bit of read data read in hexadecimal 

format is added. Both address and data have to start with “0x” followed by 8 

hexadecimal characters.  



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 15 of 21 

 

2.3.3 Connect Command and Connect Response  

The two messages described here are used for testing the connection, for e.g. to 

figure out if a system is connected that supports this protocol. 

 

The format of the connect command looks the following: 

 

$CC*<CHECKSUM><CR><LF> 

 

e.g. : $CC*00 

 

A connect command is always issued by the host. 

The connect command starts with the command identifier of the two characters 

“CC”.  

 

A connect command will always trigger a connect response in the FPGA. If some-

thing goes wrong an error response is sent containing an error code. 

 

The format of the connect response looks the following: 

 

$CR*<CHECKSUM><CR><LF> 

 

e.g. : $CR*11 

 

A connect response is always issued by the FPGA. 

The connect response starts with the command identifier of the two characters 

“CR”. 

 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 16 of 21 

2.3.4 Reset Command and Reset Response  

The two messages described here are used for resetting the cores (often not 

supported) 

 

The format of the reset command looks the following: 

 

$SC*<CHECKSUM><CR><LF> 

 

e.g. : $SC*10 

 

A reset command is always issued by the host. 

The reset command starts with the command identifier of the two characters “SC”.  

A reset ALWAYS requires the checksum. 

 

A reset command will always trigger a reset response in the FPGA. If something 

goes wrong an error response is sent containing an error code. 

 

The format of the reset response looks the following: 

 

$SR*<CHECKSUM><CR><LF> 

 

e.g. : $SR*01 

 

A reset response is always issued by the FPGA. 

The reset response starts with the command identifier of the two characters “SR”. 

 

2.3.5 Error Response  

The error messages described here is used when something goes wrong. It is 

always issued as reaction to another command. 

 

The format of the error response looks the following: 

 

$ER,<ERROR CODE>*<CHECKSUM><CR><LF> 

 

e.g. : $ER,0x00000003*70 

 



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 17 of 21 

An error response is always issued by the FPGA. 

The error response starts with the command identifier of the two characters “ER”. 

Following the identifier, a 32bit error code in hexadecimal format is added. 

The enumeration of the errors as of today is as following: 

• 0x00000000:  Checksum error 

• 0x00000001:  Unknown command (or error in command) 

• 0x00000002:  Read error on AXI 

• 0x00000003:  Write error on AXI 

• 0x00000004: Access timeout error on AXI (illegal address, no answer) 

 

  



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 18 of 21 

 

3 Delivery Structure 

UCM     -- UCM core folder 

 |-Binary    -- UCM binary 

 |-Doc     -- UCM documentations 

 |-Library    -- UCM sources 

 |-Tools    -- UCM build tools 

 

  



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 19 of 21 

4 Run 

If you do not want to build the application yourself a prebuilt binary is located in  

Binary\UniversalConfigurationManager.exe. 

 

5 Build 

To build the core there are two possibilities, a static build for redistribution and a 

dynamic build which needs that you have the QT runtime installed. 

 

For building the application QT 5.11.2 with MinGW 5.3.0 is used. In principal also 

earlier and later QT versions should be able to build the project. 

5.1 Dynamic Build 

For a dynamic build only two steps are needed: 

1. Open the project in  

Library\UniversalConfigurationManager\UniversalConfigurationManager.pro  

with QT Creator 

2. Just press the run button and it will build and lunch the application 

 

The application can be also started from the MinGW shell 

5.2 Static Build 

For a static build some additional steps are needed, since first a static library of QT 

has to be built. You can either follow the instructions here 

https://wiki.qt.io/Building_a_static_Qt_for_Windows_using_MinGW or use the 

scripts provided: 

1. Open a Windows PowerShell 

2. Run the script Tools\windows-build-qt-static.ps1 (This takes several hours: ~4h) 

 

For running the script you need and internet connection, admin rights in the Pow-

erShell and you need 7-Zip to be installed. Also it expects that QT is installed in 

C:\Qt 

 

Once the static library is built, you can build the application also with a script: 

1. Run the script Tools\Ucm_ReleaseScript.bat 

2. Run the application from Binary\UniversalConfigurationManager.exe 

 

https://wiki.qt.io/Building_a_static_Qt_for_Windows_using_MinGW


  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 20 of 21 

If you have used a different version of QT or if you have used a different installation 

location you will need to adapt the Ucm_ReleaseScript.bat file at two locations: 

 

set PATH=C:\Qt\Tools\mingw530_32\bin;%PATH% 

set PATH=C:\Qt\Static\5.11\bin;%PATH% 

 

  



  

 

 

   

  

     

 

UniversalConfigurationManager Reference Manual 1.4  Page 21 of 21 

A List of tables 

Table 1: Revision History ......................................................................................................................4 

Table 2: Definitions .................................................................................................................................. 6 

Table 3: Abbreviations .......................................................................................................................... 6 

 

B List of figures 

Figure 1: Context Block Diagram ...................................................................................................... 7 

Figure 2: FPGA Architecture Block Diagram ............................................................................... 8 

Figure 3: Software Architecture Block Diagram ........................................................................ 9 

 


	1  Introduction
	1.1 Context Overview
	1.2 Function
	1.3 FPGA Architecture
	1.4 SW Architecture

	2 Interface and Protocol Basics
	2.1 UART Interface
	2.2 ETHERNET Interface
	2.3 Protocol
	2.3.1 Write Command and Write Response
	2.3.2 Read Command and Write Response
	2.3.3 Connect Command and Connect Response
	2.3.4 Reset Command and Reset Response
	2.3.5 Error Response


	3 Delivery Structure
	4 Run
	5 Build
	5.1 Dynamic Build
	5.2 Static Build


