/\/ NetTimeLogic

Redl-srPrp

Reference Manual

Product Info

Product Manager Sven Meier

Author(s) Sven Meier

Reviewer(s) -

Version 5

Date 03.01.2023

RedHsrPrp Reference Manual 2.5 Page 1 of 98

/ Net Logic

Copyright Notice

Copyright © 2025 NetTimelLogic GmbH, Switzerland. All rights reserved.
Unauthorized duplication of this document, in whole or in part, by any means, is
prohibited without the prior written permission of NetTimelLogic GmbH, Switzer-
land.

All referenced registered marks and trademarks are the property of their respective
owners

Disclaimer

The information available to you in this document/code may contain errors and is
subject to periods of interruption. While NetTimelLogic GmbH does its best to
maintain the information it offers in the document/code, it cannot be held respon-
sible for any errors, defects, lost profits, or other consequential damages arising
from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-
UCTS AVAILABLE IN THIS DOCUMENT/CODE “AS IS,” WITH NO WARRANTIES
WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES,
INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE
HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO
EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY
DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS
DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS
PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION
THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-
MENT/CODE.

RedHsrPrp Reference Manual 2.5 Page 2 of 98

/ Net Logic

Overview

The HSR&PRP Core from NetTimelLogic is a standalone Network Redundancy Core
according to IEC62439-3 rev3. It allows to connect to a redundant network sup-
porting either the Parallel Redundancy Protocol (PRP) or the High-availability
Seamless Redundancy Protocol (HSR). It can either run as a Dual Attached Node
(DAN) being an endpoint or it can run as a Redundancy Box (RedBox) bridging
between a redundant and a non-redundant network.

The core has three ports: A redundant pair named Ports A&B and an uplink named
Port C. The basic principal is the same for both protocols: duplicating and tagging
frames on the path from Port C to Ports A&B and duplicate rejection and untag-
ging on the path from Ports A&B to Port C. It can support a configurable number
of nodes on the redundant side and also on the non-redundant network (when run
as a RedBox). It makes a basic supervision of the redundant network and sends
supervision frames for its non-redundant connected nodes. The core learns the
connected nodes itself and needs no further configuration.

The HSR&PRP Core is intercepting the path between two Ethernet PHYs and an
Ethernet core that forwards or handles Ethernet frames (MAC or Switch).

All tables, protocols and algorithms are implemented in the core, no CPU is re-
quired. This allows running network redundancy completely independent and
standalone from the user application. The core can be configured either by signals
or by an AXl4Lite-Slave Register interface.

Key Features:

. Supports the HSR and PRP redundancy protocol according to IEC62439-3
rev 3

. Can run as Dual Attached Node (DAN) or as Redundancy Box (RedBox)

. Supports HSR Mode H and Mode X and PRP Duplicate Discard Mode

. PTP aware for use with PTP Utility Profile

. Intercepts path between MAC and two PHYs (DAN) or three PHYs (RedBox)

. Configurable number of nodes supported on Port C and Promiscuous Mode

. Full line speed

. AXl4Lite register set or static configuration

. MII/RMII/GMII/RGMII Interface support

. Hardware supervision handling

. Optional frame and error counters per Port

RedHsrPrp Reference Manual 2.5 Page 3 of 98

/ Net Logic

. Optional VLAN tagging and filtering

. Optional Tail Tagging mode

. Optional cut through frame processing

. Optional HSR-PRP or HSR-HSR RedBox mode support

RedHsrPrp Reference Manual 2.5 Page 4 of 98

// NetTimeLogic

Revision History

This table shows the revision history of this document.

Version Date Revision

ON 16.06.2017 First draft

1.0 28.07.2017 First release

1.1 17.08.2017 NO mode added

Adaptations after merge with TSN and added Port
Status and Promiscuous Mode

2.0 24.07.2018

2.1 14.09.2018 Reworked and Link added

VLAN mode changed, tail tagging added and PRP
untagging as option

22 11.12.2018

2.3 07.08.2019 HSR-PRP and HSR-HSR Mode added

2.4 27.02.2020 Added cut through mode

2.5 03.01.2023 Added Vivado upgrade version description

Table T: Revision History

RedHsrPrp Reference Manual 2.5 Page 5 of 98

// NetTimeLogic

——————————GMBH

Content

1.1 Context Overview 10
1.2 Function 11
1.3 Architecture 1
1.4 Deviations from the Standard or Limitations 14

2.1 Network Redundancy (HSR/PRP) Basics 15
2.1 PRP 15
212 HSR 17
213 NO 19
214 DAN 19
215 VDAN 19
216 SAN 19
217 RedBox 20
2.1.8 Supervision 20

2.2 Tail Tagging Basics 21

3.1 Register Overview 22
32 Register Descriptions 24
321 General 24
3.2.2 Mac 37

4] Top Level - RED HsrPrp 40
4.2 Design Parts 54
421 Port A&B 54
422 PortC 60

RedHsrPrp Reference Manual 2.5 Page 6 of 98

// NetTimeLogic

——————————GMBH

4.2.3 Proxy Node Processor 67
4.2.4 Duplicate Processor 70
4.25 Supervision Processor 73
426 Seqgquence Number Processor 77
4.2.7 Ethernet Interface Adapter 79
428 Registerset 82
4.3 Configuration example 87
4.31 Static Configuration 87
4.3.2 AXI| Configuration 87
4.4 Clocking and Reset Concept 89
4.41 Clocking 89
4.42 Reset 89

5] Intel/Altera (Cyclone V) 91

52 AMD/Xilinx (Kintex 7) 91

7.1 Run Testbench 93

8.1 AMD/Xilinx: Digilent NetFpga 94

8.2 AMD/Xilinx: Vivado version 95

RedHsrPrp Reference Manual 2.5 Page 7 of 98

/\/ NetTimeLogic

Definitions

Definitions

Redundancy Box Redundancy Box according to IEC62439-3
Single Attached

A node that does not support redundancy

Node
Dual Attached _
A node that does support redundancy with HSR or PRP
Node
Virtual Dual At- A node connected via a Redundancy Box to the redundant
tached Node network
Table 2: Definitions
Abbreviations

Abbreviations

AXI AMBA4 Specification (Stream and Memory Mapped)

IRQ Interrupt, Signaling to e.g. a CPU

SYANN Single Attached Node

BYAN
VDAN
RedBox
QuadBox
PTP

PRP

HSR

B

Dual Attached Node

Virtual DAN

Redundancy Box

Two RedBoxes bridging between two redundant Networks

Precision Time Protocol according to IEEE1588

Parallel Redundancy Protocol according to IEC62439-3

High-availability Seamless Redundancy Protocol according
to IEC62439-3

Testbench

Look Up Table

Link Service Data Unit (Data in a frame)

Link Protocol Data Unit (Data in a frame)

Flip Flop

RedHsrPrp Reference Manual 2.5 Page 8 of 98

/\/ NetTimeLogic

——————————GMBH

Frame Check Seguence also known as CRC

First In First Out Buffer

Random Access Memory

Redundancy Control Trailer

Read Only Memory

Field Programmable Gate Array

Hardware description Language for FPGA'’s

Table 3: Abbreviations

RedHsrPrp Reference Manual 2.5 Page 9 of 98

/ Net Logic

1 Introduction

1.1 Context Overview

The HSR&PRP Redundancy Core is meant as a co-processing handling network
redundancy. intercepts the Media Independent Interface (MIl) on the Ethernet path
between the MAC and PHY where it handles all redundancy traffic. This means it
duplicates and tags frames coming from the Ethernet MAC and does duplicate
discarding and untagging on the paths from the Ethernet PHYs. If run in HSR mode
it also does the forwarding according to IEC62439.3 between the Ethernet PHYs. It
also generates and processes HSR&PRP Supervision frames directly in hardware
using the same data path as normal traffic coming from or going to the Ethernet
MAC. This also means that it uses a small amount (around 1 frame every 2 seconds
per node) of the bandwidth on the Mll so if 100% Network traffic shall be constant-
ly sent by the Ethernet MAC it would eventually drop some frames to still handle
HSR&PRP. The HSR&PRP Redundancy Core is designed to work in cooperation
with the Counter Clock core from NetTimelLogic (not a requirement). It contains an
AXl4Lite slave for configuration from a CPU, this is however not required since the
HSR&PRP Core can also be configured statically via signals/constants directly from
within the FPGA.

The HSR&PRP Core can be combined with a PTP Transparent Clock from NetTime-
Logic to handle also time synchronization.

RedHsrPrp Reference Manual 2.5 Page 10 of 98

/ Net Logic

CLOCK

Adjustable Clock

g
=
%
2
5
=
<
<

Time

MI1 RX—
Ml TX*— ——MII RX
RedHsPrp
MII RX— [—MI| T
Ml TXx——
Figure 1 Context Block Diagram

1.2 Function

The HSR&PRP core handles the redundancy according to IEC63439-3. It duplicates
and tags frames in the path to the PHYs and discards duplicates and untags frames
on the path to the MAC. It optionally contains a Table which contains all nodes
connected on the MAC side when run as RedBox. It sends and analyzes HSR/PRP
Supervision frames and can do forwarding of frames between the PHY ports if run
in HSR mode.

1.3 Architecture

The core is split up into different functional blocks for reduction of the complexity,
modularity and maximum reuse of blocks. The interfaces between the functional
blocks are kept as small as possible for easier understanding of the core.

RedHsrPrp Reference Manual 2.5 Page 11 of 98

/’ NetTimeLogic

' ! RedHsPrp

1
AXIS

Proxy
MII TX AXIS
Dup
& Mode & Stat
A A
A A

Dup
MII T AXIS
Proxy
'Ax i

Figure 2: Architecture Block Diagram

Ethernet
PHY

MII R

Rx Processor

This is one of the core modules, it buffers, parses and untags frames as well as
taking the forwarding decision whether to forward frames on Ports A/B or Port C.
It gets the duplicate decision from the Duplicate Processor and if in RedBox mode
also the source Decision from the Proxy Node Processor

Tx Processor

RedHsrPrp Reference Manual 2.5 Page 12 of 98

/ Net Logic

This is the other core module, it buffers, parses, tags frames as well as duplicating
frames and forwards them to Ports A & B. It gets the sequence number information
from the Sequence Number Processor or if in RedBox mode from the Proxy Node
Processor.

Supervision Processor

This block sends Supervision frame for this node and if in RedBox mode also for all
nodes in the Proxy Node Table. It also parses the incoming Supervision frames and
signals the reception to the Supervision block within which shows the logical link
status based on a timer which signals whether supervision frames have been re-
ceived in the last 5 Supervision frame intervals or not.

Duplicate Processor

This block is in charge of detecting duplicates, it contains a Duplication Table which
is a pooled Hash Table for each frame received in the redundant Network. Per
default it has 2**14 entries, meaning it can handle up to 16k frames in the redundant
network. The number of entries is configurable at compile time. Whenever a
tagged frame is received it makes an entry in the table for that frame. When the
duplicate is received, the entry is cleared. When no duplicate is received within
400ms the entry is aged out.

Proxy Node Processor

This block is only available when run in RedBox mode, it contains entries of all
nodes (per default 64, but can be changed at compile time) connected to Port C.
It stores the MAC address and a Seqguence Number which is used for Supervision
frames sending, tagging of frames on sending and in the forward decision when
run in HSR mode (frames that are source or destination of a node in the Proxy
Node table shall be removed from the ring). Nodes in the table are searched in a
linear manner but parallelized to achieve the required speed.

Sequence Number Processor
This module is only available when not run in RedBox mode, it generates Sequence
Number for the tagging.

Frame Arbiter
This block multiplexes the frames coming from Ports A & B towards Port C or from
Ports A/B &C towards Ports A/B.

RedHsrPrp Reference Manual 2.5 Page 13 of 98

/ Net Logic

(R)(G)MII Receive/Transmit Interface Adapter
These blocks convert the data stream from the (R)(G)MII to a 32bit AXI stream and
back form 32bit AXI stream to (RY(G)MII.

Register Set
This block allows reading status values and writing configuration.

1.4 Deviations from the Standard or Limitations

The deviations and limitations below apply to the core; however, the core is fully

compatible with IEC62439-23:

e No Duplicate detection for frames looping in the ring more than once, no strict
mode H, can be partly handled by mode X though

e No special SAN handling for PRP, sending always to both ports tagged

e No Supervision counters and Error counters

e No Node Table for Supervision

e PTP Traffic is handled special

e No padding between RCT and CRC for PRP allowed

e No padding of frames when frames are less than 64 bytes after untagging or
before tagging

e No IP for core

e Optional cut through frame processing

e No Duplicate Accept mode, only Duplicate Discard

e No wait after reboot

e Allows frame size up to 2044 bytes, but no Jumbo frames (which is according
to standard)

e No priority queues

e Only one VLAN supported

e No SNMP support by the core

e No QuadBox support or coupling with other HSR or PRP networks, only
PRP/HSR < SAN per default HSR-PRP or HSR-HSR mode can be enabled op-
tionaly

e Frames are sent independent of the physical link status

e No Transparent Reception for PRP

e No Bridging Mode for PRP

¢ DAN or RedBox own MAC has to be configured, no self-learning

e No Multicast Filter Table

RedHsrPrp Reference Manual 2.5 Page 14 of 98

/ Net Logic

2 PRP, HSR and Tail Tagging Basics

2.1 Network Redundancy (HSR/PRP) Basics

The two redundancy protocols: Parallel Redundancy Protocol (PRP) and
High-availability Seamless Redundancy Protocol (HSR) are closely linked and both
standardized in IEC62439-3. The goal of the two Network Redundancy Protocols is
to get rid of single point of failures in the network connections, it does not avoid
single point of failures in the devices. They use similar principals to achieve redun-
dancy by tagging and untagging frames and duplicating and discarding duplicate
frames and mostly differ on the network topology used. The tags contain a Proto-
col Identifier, a Size Field, a LAN Identifier and most important a Sequence Number
to identify frames. Each frame has an individual sequence number per source MAC
which is used to do duplicate discarding. They also send periodically so called
Supervision frames which allows to supervise the status of the redundant network,
e.g. broken links. Each node contains of at least three Ports: The redundant pair
Ports A&B and the uplink Port C.

There is also a close coupling to time synchronization according to IEEE1588, which
defines a combination of the redundancy with time synchronization in IEC61850-9-
3 (Utility Profile). NetTimelLogic’'s PTP cores can be combined with this core to get
a redundant time synchronization solution.

2.1.1 PRP

The Parallel Redundancy Protocol (PRP) is defined in chapter 4 of IEC62439-3. The
principal is quite simple, it duplicates and tags frames on sending (from Port C to
Ports A&B) and does duplicate discarding and untagging on reception (from Ports
A&B to Port C). PRP uses two individual networks (LAN A&B) of any topology to
achieve redundancy. There is no forwarding between the two networks but the two
networks shall have a similar delay. As mentioned frames are tagged on sending,
this tag is added at the end of the frame right before the FCS. In case of padding
this is inserted between the LPDU and the PRP tag, so the tag is always at the
same position in the frame (right before the FCS). Tagging at the end has another
advantage, all network nodes in the two individual networks do not have to be PRP
aware and just treat the tag as padding. This also means that Single Attached
Nodes (SAN) which are only connected to one of the networks can communicate
directly with DANs and vice versa ignoring the tags and not creating tags (See
214,215,216 and 2.1.7 for details).

RedHsrPrp Reference Manual 2.5 Page 15 of 98

/\/ NetTimeLogic

A frame is always sent to both networks and the frames are forwarded in the two
networks according to switching rules. On reception of a tagged frame for which
this node is destination the duplicate discard algorithm is run and only the first

frame received forwarded to Port C.

Figure 3: PRP
The frame format of a PRP tagged frame looks as following:

J—

0 N T N

B
SRCMAC | vian
Qo
©
K
&
a

PREAMBLE DSTMAC

VLAN Tag <
trou <

Figure 4: PRP frame

Fields of the PRP tag:

RedHsrPrp Reference Manual 2.5 Page 16 of 98

/ Net Logic

e SEQNR: 16 bit monotonous increasing (by 1 wrapping through
zero) Sequence Number

e |D: 4bit LAN Identifier, OxA for LAN A, OxB for LAN B

e LSDU Size: 12bit LSDU Size in bytes including payload and PRP
Tag

e PRP Suffix: 16bit PRP Tag Identifier: Ox88FB

WARNING! Frame payload of a non-PRP-tagged frame can always be wrongly
detected as a PRP Tag (e.g. Frames from a SAN). This is not critical for the duplica-
tion rejection but is critical when untagging, since when the wrongly detected PRP
Tag is removed the frame is corrupted because it actually cuts of the last 6 bytes
of real payload

See I[EC62439-3 chapter 4 for details.

2.1.2 HSR

The High-availability Seamless Redundancy Protocol (HSR) is defined in chapter 5
of IEC62439-3. The principal of HSR is very similar to the one of PRP. It also dupli-
cates and tags frames on sending (from Port C to Ports A&B) and does duplicate
discarding and untagging on receiving from Ports A&B to Port C). In contrast to
PRP it uses a ring structure for redundancy rather than two individual networks and
inserts the tags before the Ethertype of the LPDU rather than appending it at the
end of the frame. This means on one hand that there is frame forwarding between
the Ports A&B and each node in the redundant network needs to support HSR.
There is no scheme to connect Single Attached Nodes (SAN) directly to the ring,
they can only be connected via a RedBox to the ring, this can be either a single
node or a whole network (See 2.1.4, 215, 21.6 and 2.1.7 for details).

A frame is always sent into both directions of the ring and each node forwards the
frame to the next node if it is not destination or source of the frame. If it is the
destination (unicast) it removes the frame from the ring and runs the duplicate
discard algorithm and forwards the first occurrence of the frame to its Port C. For
multicast frames the frame is forwarded on the ring but also the duplicate discard
algorithm run towards Port C, the node who injected the frame on the ring is the
one that removes the frame from the ring again. There is a special mode called
Mode X which does also duplicate rejection on the forwarding path, meaning that
only the first occurrence of a frame is forwarded and the duplicate rejected, since it
has already passed the ring in both directions. This mode reduces the overall net-

RedHsrPrp Reference Manual 2.5 Page 17 of 98

// NetTimeLogic

work load since multicast frames do not pass through the whole ring, on the other

hand frame discarding gets non-deterministic.

HSR Ring

Figure 5: HSR

The frame format of an HSR tagged frame looks as following

JN
[y Wl

T |9
TR WM 4 - 0

PREAMBLE DSTMAC

VLAN Tag <
HSR Tag <
tPDU <

Figure 6: HSR frame

Fields of the HSR tag:
e HSR Ethertype:

e SEQNR:

16bit HSR Tag Identifier: Ox892F
16 bit monotonous increasing (by 1 wrapping through

zero) Sequence Number

Page 18 of 98

RedHsrPrp Reference Manual 2.5

/ Net Logic

e |D: 4bit Path Identifier, OxO for Path A, Ox1 for Path B
e L SDU Size: 12bit LSDU Size in bytes including payload and Ethertype
and parts of the HSR Tag

See IEC62439-3 chapter 5 for details.

2.1.3 NO

The NO mode is basically the same like HSR but without tagging and duplicate
rejection. So, it duplicates frames on the path from Port C to Port A&B and for-
wards all frames from Port A&B to Port C (which match the Destination or Mul-
ticast). It also forwards frames between the Ports A&B, removing frames on the
forwarding where it is Destination or Source.

In this mode no Supervision frames are sent or checked. No tagging or untagging is
done.

2.1.4 DAN

A Dual Attached Node (DAN) is an end node participating directly in the redun-
dancy protocols (duplication/duplicate discarding and tagging/untagging). A DAN
has only one MAC and sends Supervision frames on behalf of this node only. In
case of HSR it removes frames from the ring only for this MAC. Often a DAN is built
from a RedBox supporting only one MAC on Port C.

2.1.5 VDAN

A Virtual Dual Attached Node (VDAN) is also an end node with only one MAC, but
connected true a RedBox to the redundant network. It does not participate in the
redundancy protocols, this is taken care of in the RedBox, so in particular it does
no duplication and duplicate discarding or tagging and untagging neither does it
send Supervision frames. A VDAN has a single point of failure at the interlink be-
tween the RedBox and the node itself.

2.1.6 SAN

A Single Attached Node (SAN) is also an end node which does not participate in
the redundancy protocols. So it does neither duplication and duplicate discarding
nor tagging and untagging. In case of PRP it can be directly connected to either of
the networks (LAN A or B) but only to one at the time. A SAN has a single point of
failure since it is connected to only one of the LANSs. If a SAN is connected behind a
RedBox it is called a VDAN.

RedHsrPrp Reference Manual 2.5 Page 19 of 98

/ Net Logic

2.1.7 RedBox

A Redundancy Box (RedBox) is a network node acting as bridge between the
redundant networks and a non-redundant network. It has its own MAC address but
it's main task is to act as DANs for the VDANs connected on the non-redundant
network. It contains a so called ProxyNodeTable which has entries for each VDAN
connected to it. It does duplication of the frames received from Port C towards
Port A&B and tags them with an individual monotonous incrementing Sequence
Number for each node (MAC) in the ProxyNodeTable. It also creates Supervision
frames for each node in the ProxyNodeTable, marking the frames that they were
sent via a RedBox. On reception, it does run the duplicate discard algorithm and
untagging for all frames, not only the one it is destination. In case of HSR it re-
moves the frames, which are addressed to or sourced by a node in the
ProxyNodeTable from the ring acting like multiple DANs in a single device.

In addition to this functionality, a RedBox acts as DAN for frames sourced by or
addressed to the MAC of the RedBox itself.

2.1.8 Supervision

Both protocols define so called Supervision frames (with basically the same for-
mat) which have a reserved multicast destination MAC range (01:15:4E:00:01:XX)
and Ethertype (Ox88FB). These frames are sent periodically which allows other
nodes, and the node itself to supervise the status of the redundant network. If not
both of the Supervision frames are received from a node, a logical or physical link is
broken. In case of HSR the node can supervise its own status by checking if it
receives back the supervision frames sent by itself. In case of PRP the Supervision
frames also identify DANs from SANs which is needed for untagging frames.

RedHsrPrp Reference Manual 2.5 Page 20 of 98

/ Net Logic

2.2 Tail Tagging Basics

Tail Tagging is used to know from which Port (A or B) the frame was received and
if it was redundancy tagged when forwarded to Port C and to define when a frame
is sent to Port C on which Port (A and/or B) shall be sent (bitmask: only A, only B
or both) and if the frame shall be redundancy and/or VLAN tagged or not.

Tail Tagging is often used by switches for e.g. LLDP frames (for e.g. RSTP).

The Tail Tag is a single Byte which is inserted right before the FCS, which means it
is part of the payload and the FCS is generated over the Tail Tag.

The Tail Tag will be removed before the frame is forwarded to Ports A & B and it is
added before the frame is forwarded to Port C.

The format of the Tail Tag is as following:

|§| VIAN | ET | PAYLOAD | PADDING |§I§ 0 ImIttI FCS
£

J

ET
| PREAMBLE | DSTMAC | SRCMAC | VIAN

VLAN Tag {
trou <
Tail Tag {

Figure 7: Tail Tagged frame

Fields of the Tail tag:

e RED: Bit 7, indicating if the frame was redundancy tagged on
reception (from Port A & B) or if the frame shall be re-
dundancy tagged on transmission (to Port A & B)

e VLAN: Bit 6, indicating if the frame was VLAN tagged on
reception (from Port A & B) or if the frame shall be VLAN
tagged on transmission, if VLAN tagging is enabled (to
Port A & B)

e PortB: Bit 1, indicating if the frame is coming from Port B on
reception or if the frame shall be sent to Port B on
transmission

e Port A: Bit O, indicating if the frame is coming from Port A on
reception or if the frame shall be sent to Port A on
transmission

WARNING! When Tail Tagging is enabled every frame going to Port C, has to be
Tail Tagged, otherwise the last byte before the FCS will be treated as Tail Tag
which will result in an undefined behavior.

RedHsrPrp Reference Manual 2.5 Page 21 of 98

/\/ NetTimeLogic

3 Register Set

This is the register set of the HSR&PRP Core. It is accessible via AXl4Lite Memory Mapped. All registers are 32bit wide, no burst

access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Register ad-

dresses are only offsets in the memory area where the core is mapped in the AXI interconnects. Non existing register access in the

mapped memory area is answered with a slave decoding error.

3.1 Register Overview

Registerset Overview

Name
Red HsrPrpControl Reg

Red HsrPrpStatus Reg
Red HsrPrpVersion Reg

Red HsrPrpFrameCountControl Reg
Red HsrPrpRxFrameCountA Reg
Red HsrPrpRxErrCountA Reg

Red HsrPrpTxFrameCountA Reg
Red HsrPrpTxErrCountA Reg

Red HsrPrpRxFrameCountB Reg
Red HsrPrpRxErrCountB Reg

Red HsrPrpTxFrameCountB Reg
Red HsrPrpTxErrCountB Reg
Red HsrPrpRxFrameCountC Reg
Red HsrPrpRxErrCountC Reg

Description

Offset

Access

HsrPrp Enable Control Register Ox00000000

HsrPrp Error Status Register 0Ox00000004 WC
HsrPrp Version Register 0Ox0000000C RO
HsrPrp Status Control Register Ox0O0000010 RW
HsrPrp Received Frames Count Port A Register 0Ox00000020 RO
HsrPrp Received Error Frames Count Port A Register 0Ox00000024 RO
HsrPrp Transmitted Frames Count Port A Register 0Ox00000030 RO
HsrPrp Transmitted Error Frames Count Port A Register 0Ox00000034 RO
HsrPrp Received Frames Count Port B Register Ox00000040 RO
HsrPrp Received Error Frames Count Port B Register 0Ox00000044 RO
HsrPrp Transmitted Frames Count Port B Register 0Ox00000050 RO
HsrPrp Transmitted Error Frames Count Port B Register 0Ox00000054 RO
HsrPrp Received Frames Count Port C Register 0Ox00000060 RO
HsrPrp Received Error Frames Count Port C Register Ox00000064 RO

RedHsrPrp Reference Manual 2.5

Page 22 of 98

/\/ NetTimeLogic

GMBH

Red HsrPrpTxFrameCountC Reg
Red HsrPrpTxErrCountC Reg
Red HsrPrpConfigControl Reg
Red HsrPrpConfigMode Reg

Red HsrPrpConfigVlan Reg
Red HsrPrpMacControl Reg
Red HsrPrpMacl Reg
Red HsrPrpMac2 Reg

Table 4: Register Set Overview

HsrPrp Transmitted Frames Count Port C Register 0Ox00000070 RO
HsrPrp Transmitted Error Frames Count Port C Register 0Ox00000074 RO
HsrPrp Configuration Control Register 0Ox00000080 RW
HsrPrp Configuration Mode Register 0Ox00000084 RW
HsrPrp Configuration VLAN Register 0Ox00000088 RW
HsrPrp MAC Control Register 0Ox00000100 RW
HsrPrp MAC O-3 Ox00000104 RW
HsrPrp MAC 4-5 Ox00000108 RW

RedHsrPrp Reference Manual 2.5

Page 23 of 98

/ Net Logic

3.2 Register Descriptions
3.2.1 General

3.2.1.1 RED HsrPrp Control Register

Used for general control over the HSR&PRP Core, all configurations on the core shall only be done when disabled.

RED HsrPrpControl Reg

Reg Description

ENABLE

RO RW

Reset: OxO0O000000
Offset: OxO000

INEINLE \ Description Bits Access
Reserved, read O Bit:31:1 RO
Enable Bit: O RW

RedHsrPrp Reference Manual 2.5 Page 24 of 98

/l Net/imeLog IC

3.2.1.2 RED HsrPrp Status Register

Shows the current status of the RED HsrPrp core, status bits of supervision timeouts.

RED HsrPrpStatus Reg

Reg Description

LINK_C

LINK_B

LINK_A

TIMEOUT_B
TIMEOUT_A

RO

RO

RO

RO

RO

WC | WC

Reset: OxOO0O00000

Offset: OxO004

Name Description
= Reserved, read O

Access

LINK_C Link state of Port C

LINK B Link state of Port B

LINK_A Link state of Port A

- Reserved, read O

TIMEOUT_B No Supervision frames were received on B for the defined

TIMEOUT_A No Supervision frames were received on A for the defined

Bit:31:M RO
Bit: 10 RO
Bit: 9 RO
Bit: 8 RO
Bit:7:2 RO
Bit: 1 WC
number supervision intervals
Bit: O WC
number supervision intervals

RedHsrPrp Reference Manual 2.5

Page 25 of 98

/’ NetTimeLogic

RedHsrPrp Reference Manual 2.5 Page 26 of 98

/ Net Logic

3.2.1.3 RED HsrPrp Version Register

Version of the IP core, even though is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor
and bits 15 down to O the build numbers.

RED HsrPrpVersion Reg

Reg Description

VERSION

RO
OXX XXX XXX X
Offset: OxO00C

\ Description Access

Version of the core

RedHsrPrp Reference Manual 2.5 Page 27 of 98

/ Net Logic

3.2.1.4 RED HsrPrp Frame Count Control Register

Used for clearing all statistic counters
Only available if the generic PortStatusSupport_Gen is true.

RED HsrPrpFrameCountControl Reg

Reg Description

CLEAR

RO RW

Reset: OxO0O000000
Offset: Ox0O010

INEINLE \ Description Bits Access
Reserved, read O Bit:31:1 RO
Clear all counters (self cleared) Bit: O RW

RedHsrPrp Reference Manual 2.5 Page 28 of 98

/ Net Logic

3.2.1.5 RED HsrPrp RX Frame Count Registers

Received number of frames on the specific Port [X]: X= A, B, C. Offsets: Port A: Ox0020, Port B: 0x0040, Port C: Ox0060.
Includes also erroneous frames.
Only available if the generic PortStatusSupport_Gen is true.

Red HsrPrpRxFrameCount[X] Reg

Reg Description

RX_FRAMES

RO
Ox00000000
Offset: 0x0020, Ox0040, OxO060

\ Description
Received number of frames on Port [X] X=A,B,C Bit: 31:0 RO

RedHsrPrp Reference Manual 2.5 Page 29 of 98

/ Net Logic

3.2.1.6 RED HsrPrp RX Error Count Registers

Received number of erroneous frames on the specific Port [X]: X= A, B, C. Offsets: Port A: 0x0024, Port B: 0x0044, Port C: Ox0064.
Only available if the generic PortStatusSupport_Gen is true.

Red HsrPrpRxErrCount[X] Reg

Reg Description

RO
Ox00000000
Offset: 0x0024, 0x0044, Ox0064

" Description Access
Received number of erroneous frames on Port [X] X=A,B,C | Bit: 31:0 RO

RedHsrPrp Reference Manual 2.5 Page 30 of 98

/ Net Logic

3.2.1.7 RED HsrPrp TX Frame Count Registers
Transmitted number of frames on the specific Port [X]: X= A, B, C. Offsets: Port A: Ox0030, Port B: Ox0050, Port C: Ox0070.

Includes also erroneous frames.
Only available if the generic PortStatusSupport_Gen is true.

Red HsrPrpTxFrameCount[X] Reg

Reg Description

RX_FRAMES

RO
Ox00000000
Offset: OxO030, OxO0050, OxO070

\ Description
Transmitted number of frames on Port [X] X=A,B,C Bit: 31:0 RO

RedHsrPrp Reference Manual 2.5 Page 31 of 98

/ Net Logic

3.2.1.8 RED HsrPrp TX Error Count Registers

Transmitted number of erroneous frames on the specific Port [X]: X= A, B, C. Offsets: Port A: Ox0034, Port B: Ox0054, Port C:
0Ox0074.
Only available if the generic PortStatusSupport _Gen is true.

Red HsrPrpTxErrCount[X] Reg

Reg Description

RO
Ox00000000
Offset: 0Ox0034, Ox0054, Ox0074

\ Description Access
Transmitted number of erroneous frames on Port [X] Bit: 31:0 RO
X=AB,C

RedHsrPrp Reference Manual 2.5 Page 32 of 98

/' NetlimeLogic

3.2.1.9 RED HsrPrp Config Control Register

Configuration valid bits, used to mark the corresponding fields as valid.

RED HsrPrpConfigControl Reg

Reg Description

VLAN_ VAL
MODE_VAL

RO RW | RW
Reset: OxO0O000000
Offset: OxO080

Name Description Access

= Reserved, read O RO
VLAN_VAL VLAN valid (autocleared) Bit: 1 RW
MODE_VAL Mode valid (autocleared) Bit: O RW

RedHsrPrp Reference Manual 2.5 Page 33 of 98

/ Net Logic

3.2.1.10 RED HsrPrp Config Mode Register

Mode to run the core in, Either HSR, PRP or NON. All other modes all traffic is dropped. If Promiscuous mode is enabled all traffic
will be forwarded to Port C, duplicates rejected but all destinations. If no-forwarding is enabled frames will not be forwarded be-
tween Ports A & B. If tail-tagging is enabled each frame going to Port C needs to have a tail-tag, each frame coming from Port C
will have a tail-tag containing the source port and if the frame was redundancy tagged or not. If PRP untagging is enabled, PRP
tagged frames will be untagged, this shall only be enabled if it can be guaranteed that all frames in the redundant network contain
a PRP tag, otherwise the frame might get corrupted if the payload matches the PRP trailer pattern which will then be removed
(frame shortened by 6 bytes which was actual payload)

RED HsrPrpConfigMode Reg

Reg Description

3| 30 | 29 [28 | 27 | 26 | 25 | 24 | 23 [22 | 21 | 20 | 19 | 18 | 17 | 6 |15 |14 | 13 | 12 | 0 | 10 | 9 8 7] 6 5 4 3 2 1 0
L % QO O v
O = Z a4 D a
> Q1 5l <] © =
O Q 8 ; D) e o L
x| < x| © o ! 0
1 T — <) ! = ! O
=l z| | O = ot LU 5
- | = o L
Ol al «| O] @ a4
O ad = Z ol
o
RO RW | RW | RW | RW | RW RW RO RW RO RW
Reset: OxO0O000000
Offset: OxO084

RedHsrPrp Reference Manual 2.5 Page 34 of 98

GMBH

/ NetTimeLogic

INEINLE Description Bits \ Access
= Reserved, read O Bit:31:21 RO
CUT_THROUIGH Enable cut through frame processing Bit:20 RW
PRP_UNTAGGING Enables untagging for PRP tagged frames, only set if sure Bit:19 RW

that the incoming frames always have a PRP tag (otherwise

payload might be intrepreted as PRP tag which will end in a

corrupt frame (6bytes cut off)
TAIL_TAGGING Enables Tail Tagging, all Frames coming to Port C shall be Bit:18 RW

ta@: Eagged, all Frames comming from Port C will contain a

tail tag
NO_FORWARD Disables forwarding between Port A&B Bit:17 RW
PROMISCUOUS Promiscuous Mode Bit:16 RW
REDBOX_ID RedBox identifier, used for HSR-PRP mode (OxA or OxB) Bit:15:12 RW
= Reserved, read O Bit:11 RO
NET _ID Network identifier, used for HSR-PRP mode Bit:10:8 RW
= Reserved, read O Bit:7:3 RO
MODE Profile (O Non, 1 PRP, 2 HSR, 5 HSR-PRP, 6 HSR-HSR) Bit:2:0 RW

RedHsrPrp Reference Manual 2.5 Page 35 of 98

/ Net Logic

3.2.1.1TRED HsrPrp Config Vlan Register
VLAN for 802.3q priority tagging or virtual networks. VLAN can be enabled or disabled.

RED HsrPrpConfigVlan Reg

Reg Description

&
- <
' i
< S
>
RO RW RW
Reset: OxO0O000000
Offset: Ox0O088
Name Description Bits Access
Reserved, read O Bit:31:17 RO
VLAN enable (O disabled, 1 enabled) Bit: 16 RW
VLAN Bit: 15:0 RW

RedHsrPrp Reference Manual 2.5 Page 36 of 98

/ Net Logic

3.2.2 Mac

3.2.2.1 RED HsrPrp Mac Control Register

Configuration valid bits, used to mark the corresponding fields as valid.

RED HsrPrpMacControl Reg

Reg Description

MAC_VAL

RO RW

Reset: OxO0O000000
Offset: OxO100

Name \ Description Bits Access
Reserved, read O Bit:31:1 RO
MAC address valid (selfclearing) Bit: O RW

RedHsrPrp Reference Manual 2.5 Page 37 of 98

/\/ NetTimeLogic

3.2.2.2RED HsrPrp MAC 1 Register

MAC address of the node. LSB is transferred first on the network.
E.g. Ox01234567 => MAC: 67:45:32:01:XX:XX.

RED HsrPrpMac1 Reg

Reg Description

9 S e 5

O O O O

< < < <

> > > >

RW RW RW RW
Reset: OxO0O000000

Offset: Ox0104

\ Bits Access

Description

Name

MAC(3) MAC Byte 3 Bit:31:24 RW

MAC(2) MAC Byte 2 Bit:23:16 RW

MAC(1) MAC Byte 1 Bit:15:8 RW
Bit:7:0 RW

MAC(O) MAC Byte O

RedHsrPrp Reference Manual 2.5 Page 38 of 98

/ Net Logic

3.2.2.3RED HsrPrp MAC 2 Register

MAC address of the node. LSB is transferred first on the network.
E.g. Ox0004567 => MAC: XX: XX:XX:67:45.

RED HsrPrpMac2 Reg

Reg Description
o N
| O O
< <
> >
RO RW RW
Reset: OxO0O000000
Offset: Ox0108
Name \ Description \ Bits Access
Reserved, read O Bit:31:16 RO
MAC Byte 5 Bit:15:8 RW
MAC Byte 4 Bit:7:0 RW

RedHsrPrp Reference Manual 2.5 Page 39 of 98

// NetTimeLogic

GMBH

4 Design Description

The following chapters describe the internals of the RED HsrPrp Core: starting with
the Top Level, which is a collection of subcores, followed by the description of all
subcores.

4.1 Top Level - RED HsrPrp

4.1.1.1 Parameters

The core must be parametrized at synthesis time. There are a couple of parameters
which define the final behavior and resource usage of the core.

Name Type Size Description

Support for NO (ust forward
NoSupport_Gen boolean 1 , o

no dropping, but duplication)
HsrSupport_Gen boolean 1 Support for HSR
PrpSupport_Gen boolean 1 Support for PRP
HsrPrpSupport_Gen boolean 1 Support for HSR-PRP RedBox
HsrHsrSupport_Gen boolean 1 Support for HSR-HSR RedBox

Support for Cut Through
CutThrough_Gen boolean 1)
frame handling

ProxyNodeTable Whether the core shall be run
boolean 1
Support_Gen as a RedBox

Support for VLAN taggin
VlanSupport_Gen boolean 1 PP _ 99Ing
and untagging

Support for Tail tagging and
untagging to define to send to
TailTagging_Gen boolean 1 specific ports and to know
from which port it was re-
ceived

PtpSupport_Gen boolean 1 Support for PTP

How many nodes it supports
NrOfProxyNodes Gen HaEgE) 1 on the non-redundant net-
work when run as a RedBox

How many duplication entries
NrOfEntries_Gen natural 1 shall be stored, if this number
is lowered, chances for non-

RedHsrPrp Reference Manual 2.5 Page 40 of 98

// NetTimeLogic

——————————GMBH

HsrModeX
Support_Gen

SegNumber-
OfPorts_Gen

LinkSpeed
Support_Gen

PortStatus
Support_Gen
ClockClkPeriod
Nanosecond_Gen

StaticConfig_Gen

PortAloFf_Gen

PortBloFf_Gen

PortCloFf_Gen

AxiAddressRange
Low_Gen

AxiAddressRange
High_Gen

Sim_Gen

Table 5:

discarded duplicates is higher

boolean

If run in HSR mode if it shall
support Mode X (duplicate
discarding on the ring)

natural

How many external cores can
request a sequence number
from the core. The sequence
number is always from the
Sequence number pool of the
local MAC

natural

Shall be either 100 or 1000.
For 1000 duplication is paral-
lelized to achieve the required
throughput.

boolean

If frame and error counters
shall be available in registers

natural

Clock Period in Nanosecond:
Default for 50 MHz = 20 ns

If Static Configuration or AXI

boolean 1 _

is used

If Port A shall contain a IO Flip
boolean 1

Flop.

If Port B shall contain a 1O Flip
boolean 1

Flop.

If Port C shall contain a 1O Flip
boolean 1

Flop.

_ AXI| Base Address

std_logic_vector 32

AXI| Base Address plus Regis-
std_logic_vector 32 terset Size

Default plus OxFFFF

boolean

If in Testbench simulation
mode:

true = Simulation, false =
Synthesis

Parameters

RedHsrPrp Reference Manual 2.5

Page 41 of 98

/' NetlimeLogic

4.1.1.2 Structured Types

4.1.1.2.1 Red_SeqgReq_Type

Defined in Red_Package.vhd of library RedLib
This is the type used for sequence number requesting by thirdparty cores.

Field Name Size Description

Source |d of the port request-
_ ing a sequence number, for
std_logic_vector
external reguesters alsways

Ox0O

Table 6: Red_SegReqg_Type

4.1.1.2.2 Red_SeqReqgVal_Type

Defined in Red_Package.vhd of library RedLib
This is the type used for valid flags of sequence number requesting by thirdparty
cores.

Field Name Size Description

Reqg_Val std_logic Request valid

Table 7: Red_SegReqgVal Type

4.1.1.2.3 Red_SeqgResp_Type

Defined in Red_Package.vhd of library RedLib
This is the type used for sequence number requesting by thirdparty cores.

Field Name Size Description

, The sequence number to be
SeqgNr std_logic_vector

used by the thirdparty cores

Table 8: Red_SegReqg_Type

4.1.1.2.4 Red_SeqgRespVal_Type
Defined in Red _Package.vhd of library RedLib

RedHsrPrp Reference Manual 2.5 Page 42 of 98

// NetTimeLogic

GMBH

This is the type used for valid flags of sequence number requesting by thirdparty

cores.

Field Name

Size

Description

Response valid

Resp_Val std_logic

Table 9: Red_SegReqgVal Type

4.1.1.2.5 Red_HsrPrpStaticConfig_Type

Defined in Red_HsrPrpAddrPackage.vhd of library RedLib

This is the type used for static configuration.

Field Name Type Size Description
The MAC of the node. Used for
Common_ o .
OwnMac 6 supervision frames and dis-
Byte Type .
carding
Redundancy Mode:
Hsr E
Pro_E
Red_Mode Type 1
HsrPrp_ E
HsrHsr E
No_E
_ RedBox Network Identifier for
RedBoxNetld std_logic_vector 3
HSR-PRP mode
_ RedBox |dentifier for HSR-PRP
RedBox|d std_logic_vector 4

mode

PromiscuousMode std_logic

If Promiscuous mode shall be
active for Port C

NoForward std_logic

If forwarding between Ports A
& B shall be disabled

TailTagging std_logic

If tail tagging shall be used for
frames to and from Port C

ProUntagging std_logic

If frames from Port A and B
shall be untagged when for-
warded to Port C

CutThough std_logic

If frames shall be processed in
cut through mode

RedHsrPrp Reference Manual 2.5

Page 43 of 98

/\/ NetTimeLogic

The Pcp,Dei and Vid of the
VLAN
VlanEnable std_logic 1 If VLAN shall be used

Vlan Red Vlan_Type 1

Table 10: Red_HsrPrpStaticConfig Type

4.1.1.2.6 Red_HsrPrpStaticConfigVal_Type

Defined in Red_HsrPrpAddrPackage.vhd of library RedLib
This is the type used for valid flags of the static configuration.

Field Name Size Description

Vlan_Val std_logic If the VLAN shall be set
Enable Val std_logic 1 Enables the RED HsrPrp

Table 11 Red_HsrPrpStaticConfigVal _Type

4.1.1.2.7 Red_HsrPrpStaticStatus_Type

Defined in Red_HsrPrpAddrPackage.vhd of library RedLib
This is the type used for static status supervision.

Field Name Type Size Description

Enabled std_logic 1 If the core is enabled

Redundancy Mode:

Hsr E

Pro_E

HsrPrp_ E

HsrHsr_E

No_ E

RedBox Network Identifier for
HSR-PRP mode

RedBox Identifier for HSR-PRP

RedMode Red_Mode_Type 1

RedBoxNetld std_logic_vector 3

RedBoxId std_logic_vector 4
mode
SupervisionTimeout , No supervision frames re-
std_logic 1 .
PortA ceived on Port A
SupervisionTimeout , No supervision frames re-
std_logic 1 .
PortA ceived on Port B

Table 12: Red_HsrPrpStaticStatus_Type

RedHsrPrp Reference Manual 2.5 Page 44 of 98

/ Net Logic

4.1.1.2.8 Red_HsrPrpStaticStatusVal_Type

Defined in Red_HsrPrpAddrPackage.vhd of library RedLib
This is the type used for valid flags of the static status supervision.

Field Name Size Description

std_logic Dummy flag (unused)

Table 13: Red_HsrPrpStaticStatusVal_Type

4.1.1.3 Entity Block Diagram

RedHsrPrp Reference Manual 2.5 Page 45 of 98

/¢ NetTimeLogic

——————GMBH

~(R)(G)MII TX

—(R)(G)MII RN

Mac & Mode & Status:

(R)G)MII R

(R)(GMIl TX—

DY Mac & Mode
s
Prowy

~A(R)(G)MIITX

—(R)(G)MII RX}

Figure 8: RED HsrPrp Core

4.1.1.4 Entity Description

Port A& B
This module arbitrates between the forwarding Ports A&B and the uplink Port C in
the direction to the PHY. It buffers and extracts frame information and takes the

RedHsrPrp Reference Manual 2.5 Page 46 of 98

/ Net Logic

forwarding decision based on information from the Duplicate Processor and Proxy
Node Processor. It also untags the frames if required. Only valid frames and no
duplicates frames are forwarded to either Port A&B or Port C.

See 4.2.1 for more details.

Port C

This module arbitrates between the Ports A&B in the uplink direction towards the
MAC. It also arbitrates between the Supervision Processor and the MAC towards
Ports A&B. It buffers and extracts frame information and tags the frames based on
information from the ProxyNodeTabel or Sequence Number generator depending
on the mode (DAN or RedBox). It then buffers the frame in two individual FIFOs
before forwarding them to the Ports A&B.

See 4.2.2 for more details.

Proxy Node Processor

This module learns what nodes are connected on Port C. It is used to generate
Seguence Numbers on a per node base. It is also used for the forwarding decision
when run in HSR mode. This module is only present if the Core is running as a
RedBox otherwise the Sequence Number Processor is taking care of this.

See 4.2.3 for more details.

Duplicate Processor

This module checks if a duplicate is received. It contains a pooled hash table for the
duplicate detection.

See 4.2.4 for more details.

Supervision Processor

This module sends Supervision frames based on the nodes stored in the Proxy
Node Table and the local MAC. It also supervises the reception of Supervision
frames, to detect if a link is broken. In case of failure it will signal Supervision frame
timeouts on the specific Ports.

See 4.2.5 for more details.

Sequence Number Processor

This module generates Sequence Numbers which are used by the tagger or third-
party cores which require a Sequence Number because they send their own
tagged frames. This module is only present if the Proxy Node Processor is not
present which is the case when the Core is running as a DAN.

RedHsrPrp Reference Manual 2.5 Page 47 of 98

/\/ NetTimeLogic

GMBH

See 4.2.6 for more details.

MAC & PHY Ethernet Interface Adapter

This module converts the Media Independent Interface (MIl) to AXI stream and vice
versa. It is also in charge of generating correct Interframe Gaps and a Preamble
with SFD.

See 4.2.7 for more details.

Registerset

This module is an AXI4Lite Memory Mapped Slave. It provides access to all Regis-
ters and allows to configure the HSR&PRP Core. It can be configured to either run
in AX| or StaticConfig mode. If in StaticConfig mode, the configuration of the
Registers is done via signals and can be easily done from within the FPGA without
CPU. If in AXI mode, a AX| Master has to configure the Datasets with AXI writes to
the registers, which is typically done by a CPU

See 4.2.8 for more details.

4.1.1.5 Entity Declaration

Name Type Description

Generics

General
Support for NO (ust

forward no drop-

NoSupport_Gen - boolean 1 _]
ping, but duplica-
tion)

HsrSupport_Gen - boolean 1 Support for HSR

PrpoSupport_Gen - boolean 1 Support for PRP
Support for Cut

CutThrough_Gen - boolean 1 Through frame
handling
Whether the core

ProxyNodeTable

- boolean 1 shall be run as a

Support_Gen
RedBox
Support for VLAN

VlanSupport_Gen - boolean 1 tagging and untag-
ging

RedHsrPrp Reference Manual 2.5 Page 48 of 98

/ NetTimeLogic

GMBH

Support for Tail
tagging and untag-
ging to define to
TailTagging_Gen - boolean 1 send to specific
ports and to know
from which port it
was received

PtpoSupport_Gen - boolean 1 Support for PTP

How many nodes it
supports on the
non-redundant
NrOfProxyNodes Gen - natural 1
network when run
as a RedBox (shall

be a power of 2)

How many duplica-
tion entries shall be
stored, if this num-
: ber is lowered,
NrOfEntries_Gen - natural 1
chances for non-
discarded dupli-
cates is higher (shall

be a power of 2)

If run in HSR mode

if it shall support
HsrModeX PP

- boolean 1 Mode X (duplicate
Support_Gen

discarding on the
ring)
How many external

cores can request a
seguence number
from the core. The

SegNumber
OfPorts_Gen

- natural 1 seguence number is
always from the
Seguence number
pool of the local

MAC
LinkSpeed Shall be either 100
- natural 1
Support_Gen or 1000. For 1000

RedHsrPrp Reference Manual 2.5 Page 49 of 98

/\/ NetTimeLogic

GMBH

ClockClkPeriodNano-
second_Gen

PortStatus
Support_Gen

StaticConfig_Gen

PortAloFf_Gen

PortBloFf _Gen

PortCloFf_Gen

AxiAddressRange
Low_Gen

AxiAddressRange
High_Gen

System
SysClk_ClkIn

SysRstN_RstIn
Config

StaticConfig_Datln

StaticConfig_Valln

duplication is paral-
lelized to achieve
the required

throughput.

Integer Clock Period
- natural 1

If frames and error

counters shall be
- boolean 1 _ _

available in the

registerset

If Static Configura-
- boolean 1 _ _

tion or AXl is used

If Port A shall con-
- boolean 1 _ _

tain a 1O Flip Flop.

If Port B shall con-
- boolean 1 _ _

tain a 1O Flip Flop.

If Port C shall con-
- boolean 1

tain a 1O Flip Flop.

std_logic_vector

32

AX| Base Address

std_logic_vector

32

AXI| Base Address
plus Registerset
Size

Default plus OxFFFF

If in Testbench
simulation mode:

- boolean 1])
true = Simulation,
false = Synthesis
Ports
in | std_logic 1 System Clock
in | std_logic 1 System Reset
" Red HsrPrp : Static Configuration
StaticConfig_Type
Red_HsrPrp Static Configuration
in | StaticConfigVal 1 valid
_Type

RedHsrPrp Reference Manual 2.5

Page 50 of 98

// NetTimeLogic

Status

_ Red_HsrPrp Static Status
StaticStatus_DatOut out _ 1
StaticStatus_Type
Red_HsrPrp Static Status valid
StaticStatus_ValOut out | StaticStatusVal 1
_Type
Timer
Millisecond timer
Timerims_Evtin [std_logic 1 adjusted with the
Clock
SegNr Info Input
_ Red_SegReqg seaNum- | Sequence Number
N berOfPort
SeqReq_Datin Array_Type sGen | Request
_ Red_ SegRegVal seaum- | Sequence Number
N berOfPort
SeqReq_Valin Array_Type scen | Request valid
SegNr Info Output
; Red_SegResp seaNum- | Sequence Number
ou berOfPort
SeqResp_DatOut Array_Type scen | Response
; Red_SegRespVal seaNum- | Sequence Number
ou berOfPort
SeqResp_valOut Array_Type scen | Response valid
Port(A/B) Link Input
Port(A/B) in | std_logic Link state
Link_Datln
Port(A/B)(R)(G)Mii RX Clk/Rst Input
POI’t(A/B) in std IOg|C 1 RX Clock
(RY(G)MIiRxClk_CIKkIn
Port(A/B) , td looi : Reset aligned with
¥ in |s ogic
I(I’I?Q)(G)M||RsttN_Rst 109 RX Clock
Port(A/B)(R)(G)Mii TX Clk/Rst Input
POI’t(A/B) in std |Ogic 1 TX Clock
(RY(G)MIiTxClk_ClkiIn B
Port(A/B) _ td looi : Reset aligned with
¥ in |s ogic
I(r?)(G)M”TXRStN_RSt _109 TX Clock
Port(A/B)(R)(G)Mii RX Data Input
Port(A/B) : std_logic 1 RX Data valid
(R)(G)MIiiRxDv_Enaln B
Port(A/B) in | std_logic 1 RX Error
(R)(G)MIiiRxErr_Enaln B
RX Data
Port(A/B) , .
(R)(G)MiiRxData_Dat in | std_logic_vector 2-8 | MI:4, RMII:2, GMII:8,
In RGMI:4
(R)(G)MiiCol_Datln B
Port(A/B) in | std_logic 1 Carrier Sense
(R)(G)MiiCrs_DatlIn -

RedHsrPrp Reference Manual 2.5 Page 51 of 98

/\/ NetTimeLogic

Port(A/B)(R)(G)Mii TX Data Output

Port(A/B) , TX Data valid
(RY(G)MIITXENn_Ena out | std_logic 1
Out
Port(A/B) _ TX Error
(R)(G)MIiTxErr_Ena out | std_logic 1
Out
TX Data
Port(A/B) _
(R)(G)MiiTxData_Dat out | std_logic_vector 2-8 Mll:4, RMII:2, GMIL:S,
S RGMII4
PortC Link Input ‘
Ei%ECDatln in | std_logic Link state
PortC(R)(G)Mii RX Clk/Rst Output
PortC _ RX Clock
(R)(G)MiiRxClk_CIk out | std_logic 1
Out
PortC ; td logi : Reset aligned with
i out |s ogic
E)Ru)t(G)MquRstN_Rst _log RX Clock
PortC(R)(G)Mii TX Clk/Rst Output
PortC _ TX Clock
(RY(G)MIiTxClk_Clk out | std_logic 1
Out
PortC . td loai : Reset aligned with
i out |s ogic

E)IQJt(G)M||TsttN_Rst _1og X Clock
PortC(R)(G)Mii RX Data Output
PortC , RX Data valid
(R)(G)MIiiRxDv_Ena out | std_logic 1
Out
PortC . RX Error
(R)(G)MiiRxErr_Ena out | std_logic 1
Out
PortC RX Data

or
(R)(G)MiiRxData_Dat std_logic_vector 2-8 Mll:4, RMII:2, GMIL:S,
OUE RGMII:4
PortC out | std_logic 1 Collision
(R)(G)MiiCol_DatOut
PortC out | std_logic 1 Carrier Sense
(R)(G)MiiCrs_DatOut B
PortC(R)(G)Mii TX Data Input
PortC _ _ TX Data valid
(R)(G)MIITXEn_Ena in | std_logic 1
In
PortC : . TX Error
(R)(G)MIiTxErr_Ena in | std_logic 1
In
PortC TX Data

or
(R)(G)MiiTxData_Dat ' std_logic_vector 2-8 Mll:4, RMII:2, GMII:S,
i RGMIl:4

AXl4 Lite Slave

RedHsrPrp Reference Manual 2.5 Page 52 of 98

// NetTimeLogic

——————————GMBH

AxiWriteAddrValid
_Valln

AxiWriteAddrReady
_RdyOut

AxiWriteAddrAddress
_AdrIn

AxiWriteAddrProt
_Datln

AxiWriteDataValid
_Valln
AxiWriteDataReady
_RdyOut
AxiWriteDataData
_Datln
AxiWriteDataStrobe
_DatlIn

AxiWriteRespValid
_ValOut

AxiWriteRespReady

_Rdyln

AxiWriteResp
Response_DatOut
AxiReadAddrValid
_Valln

AxiReadAddrReady
_RdyOut

AxiReadAddrAddress
_AdrIn

AxiReadAddrProt
_Datln

AxiReadDataValid
_ValOut
AxiReadDataReady
_Rdyln
AxiReadData
Response DatOut

AxiReadDataData
_DatOut

Table 14:

std_logic

Write Address Valid

std_logic

Write Address
Ready

Write Address

std_logic_vector 32
. Write Address
std_logic_vector 3
Protocol
std_logic 1 Write Data Valid
std_logic 1 Write Data Ready
std_logic_vector 22 | Write Data
std_logic_vector 4 Write Data Strobe
. Write Response
std_logic 1 .
Valid
. Write Response
std_logic 1
Ready
std_logic_vector 2 Write Response
std_logic 1 Read Address Valid
, Read Address
std_logic 1
Ready
std_logic_vector 32 | Read Address
. Read Address
std_logic_vector 3
Protocol
std_logic 1 Read Data Valid
std_logic 1 Read Data Ready
std_logic_vector 2 Read Data
_ Read Data Re-
std_logic_vector 32

sponse

RED HsrPrp Core

RedHsrPrp Reference Manual 2.5

Page 53 of 98

// NetTimeLogic

GMBH

4.2 Design Parts

The RED HsrPrp Core core consists of a couple of subcores. Each of the subcores
itself consist again of smaller function block. The following chapters describe these
subcores and their functionality. The Core is used for TSN as well only the relevant
interfaces for HSR&PRP are described, this means there are more generics and
signals on the entities which are not relevant for HSR&PRP.

4.2.1 Port A&B

4.2.1.1 Entity Block Diagram

~—AXIS—

Figure 9: Port A&B

4.2.1.2 Entity Description

Arbiter

This module merges the AXIS forwarding path from the Ports A&B (Port B when
Port A and vice versa) with the AXIS path from Port C. The merged stream is then
forwarded to the interface adapter.

RX Processor

Ax's>.

CONTROL
Process

Figure 10: Rx Processor

RedHsrPrp Reference Manual 2.5 Page 54 of 98

// NetTimeLogic

GMBH

This module is one of the core modules of the design. It parses incoming frames,
does the duplicate discarding, untagging (retagging), CRC recalculation and split
into paths to Ports A&B or Port C. To do so it requests from the Proxy Node Pro-
cessor if the frame received is from/for a Proxy Node and drops it accordingly on
the forwarding path of Ports A&B. For duplicate discarding it requests from the
Duplicate Processor if the frame is a duplicate or not. Depending on the mode and
result a frame is then forwarded to the Ports A&B and/or Port C.

If VLAN is enabled it also checks the VLAN and only forwards matching VID (and
VID O) frames to Port C, the VLAN tag is then removed. If there are multiple VLAN
tags only the outer VLAN is removed.

If Tail Tagging is supported and enabled, it will add the Tail Tag to the frame before
the FCS to indicate from which port the frame came and if it was VLAN and/or
redundancy tagged.

4.2.1.3 Entity Declaration

Name ir Type Size Description

Generics

General
Support for NO (ust

forward no drop-

NoSupport_Gen - boolean 1 , ,
ping, but duplica-
tion)

HsrSupport_Gen - boolean 1 Support for HSR

PrpSupport_Gen - boolean 1 Support for PRP
Support for HSR-

HsrPrpSupport_Gen - boolean 1
PRP RedBox
Support for HSR-

HsrHsrSupport_Gen - boolean 1
HSR RedBox
Support for Cut

CutThrough_Gen - boolean 1 Through frame
handling

VlanSupport_Gen - boolean 1 Support for VLAN

Support for Tail

. . tagging and untag-
TailTagging_Gen - boolean 1 , ,
ging to define to

send to specific

RedHsrPrp Reference Manual 2.5 Page 55 of 98

// NetTimeLogic

GMBH

Sim_Gen

Ports

ProxyNodeTable
Support_Gen

PtpSupport_Gen

HsrModeXSup-
port_Gen

LinkSpeed
Support_Gen

PortStatus
Support_Gen

Srcld_Gen

System
SysClk_Clkin

SysRstN_RstIn
Own MAC Input

OwnMac_Datln

VLAN Input
Vlan_Datln

ports and to know
from which port it
was received

boolean

boolean

If in Testbench

simulation mode:
true = Simulation,
false = Synthesis

Whether the core
shall be run as a
RedBox

boolean

Support for PTP

boolean

If run in HSR mode
if it shall support
Mode X (duplicate
discarding on the
ring)

natural

Shall be either 100
or 1000. For 1000
duplication is paral-
lelized to achieve
the required
throughput.

boolean

If frames and error
counters shall be
available in the
registerset

std_logic_vector

Port identifier:
OxA for Port A
OxB for Port B

Ports
in | std_logic System Clock
in | std_logic System Reset
_ MAC address of the
in Common_Byte Type
node
in Red_Vlan_Type VLAN

RedHsrPrp Reference Manual 2.5

Page 56 of 98

// NetTimeLogic

GMBH

VlanEnable Datln

Mode Input

RedMode_DatIn

VLAN mode ena-

RedBoxNetld_Datln

RedBoxl|d_DatlIn

Promiscuous-
Mode_ DatIn

CutThrough_Valin

NoForward_Datln

TailTagging_DatIn

PrpUntagging_DatIn
Link Input

Link_DatlIn

LinkSpeed_Datln

Proxy Info Output

ProxyReq_DatOut

ProxyReq_ValOut

Proxy Info Input

ProxyResp_DatIn

in std_logic
bled
Redundancy Mode:
Hsr E
. Pro_E
in Red_Mode Type
HsrPrp_ E
HsrHsr_E
No_E
RedBox Network
in std_logic_vector Identifier for HSR-
PRP mode
_ _ RedBox Identifier
in std_logic_vector
for HSR-PRP mode
_ _ If in Promiscuous
in std_logic
mode
_ _ If cut through shall
in std_logic
be enabled
If forwarding be-
in | std_logic tween Ports A & B
shall be disabled
_ _ If Tail Tagging shall
in std_logic
be done
_ _ If PRP frames shall
in std_logic
be untagged
, , Link state of the
in std_logic
Port
Com- Link spped of the
in mon_LinkSpeed Typ node
e
Proxy Table Proces-
out | Red_ProxyReqg_Type
sor request
; Red_ProxyRegVal__ Proxy Table Proces-
ou

Type

Red ProxyResp
Type

sor request valid

Proxy Table Proces-

SOor response

RedHsrPrp Reference Manual 2.5

Page 57 of 98

/\/ NetTimeLogic

GMBH

ProxyResp Valln
Duplicate Info Output

DupReqg_DatOut

Red_ProxyRespVal
Type

Red DupReg Type

Proxy Table Proces-
sor response valid

Duplicate Processor
regquest

DupReqg_ValOut
Duplicate Info Input

DupResp_Datln

out

Red_DupRegVal__
Type

Red DupResp
Type

Duplicate Processor
request valid

Duplicate Processor
response

DupResp_Valln
Port Status Output
PortStatus_DatOut

AXi Input
AxisRxValid_Valln

Red DupRespVal_
Type

Red_Port
Status_Type

std_logic

Duplicate Processor
response valid

Port Status

AX| Stream frame

AxisRxReady_ValOut

input

AxisRxData_Datln

AxisRxStrobe_Valln

AxisRxKeep_Valln

AxisRxLast_Valln

AxisRxUser_Datln
Axi Output
AxisTxValid_ValOut

AX| Stream frame

AxisTxReady_Valln

output

AxisTxData_DatOut

AxisTxStrobe ValOut

AxisTxKeep_ValOut

AxisTxLast ValOut

AxisTxUser_DatOut

Axi TX Port A/B Input
AxisTxPortAB
Valid _Valln

AX| Stream frame

AxisTxPortAB
Ready ValOut

input

AxisTxPortAB
Data_Datln

AxisTxPortAB
Strobe Valln

AxisTxPortAB
Keep_ Valln

out | std logic 1
in std_logic_vector 32
in std_logic_vector 4
in std_logic_vector 4
in std_logic 1

std_logic_vector 3
std_logic 1
in std_logic 1

out | std logic_vector 32

out | std logic_vector 4

out | std logic_vector 4

out | std logic 1

std_logic_vector 3
std_logic 1

out | std_logic 1
in std_logic_vector 32
in std_logic_vector 4
in | std_logic_vector 4

RedHsrPrp Reference Manual 2.5

Page 58 of 98

// NetTimeLogic

GMBH

AxisTxPortAB
Last Valln
AxisTxPortAB
User_Datln
Axi TX Port C Input
AxisTxPortC
Valid Valln
AXxisTxPortC
Ready_ ValOut
AxisTxPortC
Data_Datln
AxisTxPortC
Strobe Valln
AXxisTxPortC
Keep_ Valln
AxisTxPortC
Last_Valln
AxisTxPortC
User Datln

AxisRxPortAB
Valid_ValOut
AXxisRxPortAB
Ready_ Valln
AXxisRxPortAB
Data_DatOut
AxisRxPortA
BStrobe ValOut
AXxisRxPortAB
Keep_ValOut
AXxisRxPortAB
Last_ValOut
AxisRxPortAB
User DatOut
Axi RX Port C Output
AxisRxPortC
Valid_ValOut
AxisRxPortC
Ready_Valln
AXxisRxPortC
Data_DatOut
AxisRxPortC
BStrobe ValOut
AxisRxPortC
Keep_ValOut
AXxisRxPortC
Last_ValOut
AxisRxPortC
User DatOut
Enable Input

Enable_Enaln

Table 15; Port A&B

AXI| Stream frame

input

Axi RX Port A/B Output

AXI| Stream frame

output

AXI| Stream frame

output

in | std_logic 1
in std_logic_vector 3
in std_logic 1
out | std logic 1
in | std_logic_vector 32
in std_logic_vector 4
in std_logic_vector 4
in | std_logic 1
in std_logic_vector 3
out | std logic 1
in std_logic 1
out | std_logic_vector 32
out | std logic_vector 4
out | std_logic_vector 4
out | std_logic 1
out | std logic_vector 3
out | std logic 1
in std_logic 1
out | std_logic_vector 32
out | std logic_vector 4
out | std_logic_vector 4
out | std_logic 1
out | std logic_vector 3
in std_logic 1

Enable core

RedHsrPrp Reference Manual 2.5

Page 59 of 98

// NetTimeLogic

GMBH

4.2.2Port C

4.2.2.1 Entity Block Diagram

~— A1} s B—o
-AXIS § G- .<l AXIS S G- —
& AXIS A

|
A AXIS B

|

|

|

qu

Figure 11: Port C

4.2.2.2 Entity Description

Arbiter
This module merges the AXIS paths from the Ports A&B. The merged stream is
then forwarded to the interface adapter.

Tagger
This module tags supervision frames towards Port C in case of a HSR-PRP RedBox.

TX Processor

Figure 12: Tx Processor

This module is one of the core modules of the design. It parses incoming frames,
does the duplication, tagging, CRC recalculation and split into paths to Ports A&B.
To do so it requests from the Proxy Node Processor if in RedBox mode, or from the
Seguence Number generator if in DAN mode, a sequence number for tagging. Then

RedHsrPrp Reference Manual 2.5 Page 60 of 98

// NetTimeLogic

GMBH

the two tagged frames are forwarded to the two individual Ports. It also merges
the path from the interface adapter with the path from the Supervision Processor.
If VLAN is enabled, the frame is tagged if not already VLAN tagged; if already
tagged the VLAN tag is forwarded untouched. Also, it merges the Supervision
frames into the stream

If Tail Tagging is enabled, it extracts the information from the Tail Tag and for-
wards the frames only to the Ports indicated in the Tail Tag. If the Tail Tag states to
not redundancy tag the frame or to not VLAN tag the frame it will skip this as well.
This requires that each frame coming to this module is Tail Tagged, otherwise the
last byte before the FCS is interpreted wrongly as Tail Tag.

4.2.2.3 Entity Declaration

Name ir Type Size Description

Generics

General

Support for NO (ust
forward no drop-

NoSupport_Gen - boolean 1 _ ,
ping, but duplica-
tion)

HsrSupport_Gen - boolean 1 Support for HSR

PrpSupport_Gen - boolean 1 Support for PRP
Support for HSR-

HsrPrpSupport_Gen - boolean 1
PRP RedBox
Support for HSR-

HsrHsrSupport_Gen - boolean 1
HSR RedBox
Support for Cut

CutThrough_Gen - boolean 1 Through frame
handling

VlanSupport_Gen - boolean 1 Support for VLAN

Support for Tail
tagging and untag-
ging to define to
TailTagging_Gen - boolean 1 send to specific
ports and to know
from which port it
was received

RedHsrPrp Reference Manual 2.5 Page 61 of 98

// NetTimeLogic

GMBH

Sim_Gen

Ports

ProxyNodeTable
Support_Gen

boolean

boolean

If in Testbench

simulation mode:
true = Simulation,
false = Synthesis

Whether the core
shall be run as a
RedBox

PtpSupport_Gen

boolean

Support for PTP

HsrModeXSup-
port_Gen

boolean

If run in HSR mode
if it shall support
Mode X (duplicate
discarding on the
ring)

LinkSpeed
Support_Gen

natural

Shall be either 100
or 1000. For 1000
duplication is paral-
lelized to achieve
the required
throughput.

PortStatus
Support_Gen

boolean

If frames and error
counters shall be
available in the
registerset

Srcld_Gen

System
SysClk_ClkIn

std_logic_vector

Ports

std_logic

Port identifier:
OxA for Port A
OxB for Port B

System Clock

SysRstN_RstIn
Own MAC Input

OwnMac_DatlIn

VLAN Input
Vlan_Datln

std_logic

Common_Byte Type

Red_Vlan_Type

System Reset

MAC address of the
node

VLAN

VlanEnable Datln

Mode Input

std_logic

VLAN mode ena-
bled

RedHsrPrp Reference Manual 2.5

Page 62 of 98

// NetTimeLogic

GMBH

RedMode_DatIn

RedBoxNetld_Datln

RedBox|d_Datln

CutThrough_Valln

TailTagging_DatIn

Link Input

Link_DatlIn

LinkSpeed_Datln

Proxy Info Output

ProxyReqg_DatOut

ProxyReqg_ValOut
Proxy Info Input

ProxyResp Datin

ProxyResp_Valln

SegReqg_DatOut

SegReqg_ValOut

SegResp_Datln

Redundancy Mode:
Hsr E

. Pro_E
in Red_Mode Type
HsrPrp_ E
HsrHsr_E
No_ E
RedBox Network
in std_logic_vector Identifier for HSR-
PRP mode
, , RedBox Identifier
in | std_logic_vector
for HSR-PRP mode
_ _ If cut through shall
in std_logic
be enabled
. . If Tail Tagging shall
in std_logic
be done
_ _ Link state of the
in std_logic
Port
Com- Link spped of the
in mon_LinkSpeed_Typ node
e
Proxy Table Proces-
out | Red ProxyReqg_Type
sor request
; Red_ProxyRegVal Proxy Table Proces-
ou
Type sor request valid
, Red_ProxyResp Proxy Table Proces-
in
Type sor response
, Red_ProxyRespVal_ Proxy Table Proces-
in

Segquence Number Info Outpu

Type

sor response valid

t
; Red_SegReq Sequence Number
ou
Array_Type Processor request
Seguence Number
Red_SegRegVal
out Processor request

Segquence Number Info Input

in

Array_Type

Red_SegResp

valid

Seqguence Number

RedHsrPrp Reference Manual 2.5

Page 63 of 98

/‘/ NetTimeLogic

GMBH

Array_Type

Processor response

SegResp_Valln

Duplicate Info Output

DupReqg_DatOut

Red_SegRespVal

Seqguence Number

DupReqg_ValOut
Duplicate Info Input

DupResp_Datln

DupResp_Valln
Port Status Output
PortStatus_DatOut

AXi Input
AxisTxValid_Valln

AxisTxReady_ValOut

AxisTxData_Datln

AxisTxStrobe_Valln

AxisTxKeep_Valln

AxisTxLast_Valln

AxisTxUser_Datln
Axi Output
AxisRxValid_ValOut

AxisRxReady_Valln

AxisRxData_DatOut

AXxisRxStrobe ValOut

AxisRxKeep_ ValOut

AxisRxLast ValOut

AxisRxUser_DatOut

Axi RX Port A Input
AXisRxPortA
Valid _Valln

AxisRxPortA
Ready ValOut

AXxisRxPortA

Data_Datln

AXxisRxPortA
Strobe Valln

in 2 Processor response
Array_Type ,
valid
Duplicate Processor
Red DupReg Type 1
request
‘ Red_DupRegVal__ : Duplicate Processor
ou
Type request valid
_ Red_DupResp_ : Duplicate Processor
in
Type response
_ Red_DupRespVal_ : Duplicate Processor
in
Type response valid
Red Port : Port Status
Status_Type
std_logic 1 AXI| Stream frame
out | std logic 1 input
in std_logic_vector 32
in std_logic_vector 4
in std_logic_vector 4
in std_logic 1
std_logic_vector 3
std_logic 1 AXI| Stream frame
in std_logic 1 output
out | std_logic_vector 32
out | std logic_vector 4
out | std logic_vector 4
out | std logic 1
std_logic_vector 3
Std_|ogic 'I AX' Stream ﬂ’ame
: input
out | std_logic 1
in | std_logic_vector 32
in std_logic_vector 4

RedHsrPrp Reference Manual 2.5

Page 64 of 98

// NetTimeLogic

GMBH

AxisRxPortA
Keep_Valln

AXxisRxPortA
Last_Valln

AXxisRxPortA

User_ Datln

Axi RX Port B Input
AxisRxPortB
Valid_Valln

AXI| Stream frame

AxisRxPortB
Ready_ValOut

input

AXxisRxPortB
Data_Datln

AxisRxPortB
Strobe Valln

AxisRxPortB
Keep_Valln

AXxisRxPortB
Last Valln

AxisRxPortB

User_ Datln

Axi TX Port S AB Input
AxisTxPortSAB
Valid_Valln

AXI| Stream frame

AXxisTxPortSAB
Ready_ValOut

input

AxisTxPortSAB
Data_Datln

AxisTxPortSAB
Strobe_Valln

AXisTxPortSAB
Keep_Valln

AxisTxPortSAB
Last Valln

AxisTxPortSAB
User_Datln

Axi TX Port S C Input
AXisTxPortSC
Valid_Valln

AX| Stream frame

AXisTxPortSC
Ready_ValOut

input

AxisTxPortSC
Data_Datln

AXxisTxPortSC
Strobe_Valln

AXisTxPortSC
Keep_Valln

AxisTxPortSC
Last Valln

AXisTxPortSC
User_Datln

Axi TX Port A Output
AXxisTxPortA
Valid_ValOut

std_logic_vector 4
std_logic 1
std_logic_vector 3
std_logic 1
std_logic 1
std_logic_vector 32
std_logic_vector 4
std_logic_vector 4
std_logic 1
std_logic_vector 3
std_logic 1
std_logic 1
std_logic_vector 32
std_logic_vector 4
std_logic_vector 4
std_logic 1
std_logic_vector 3
std_logic 1
std_logic 1
std_logic_vector 32
std_logic_vector 4
std_logic_vector 4
std_logic 1
std_logic_vector 3

std_logic

AX| Stream frame

AXisTxPortA
Ready_ Valln

std_logic

output

RedHsrPrp Reference Manual 2.5

Page 65 of 98

// NetTimeLogic

GMBH

AxisTxPortA out | std_logic_vector 32
Data_DatOut

AxisTxPortA out | std_logic_vector 4

BStrobe_ValOut

AxisTxPortA out | std_logic_vector 4

Keep_ ValOut

AxisTxPortA out | std_logic 1

Last_ValOut

AXxisTxPortA out | std_logic_vector 3

User DatOut

Axi TX Port B Output

AxisTxPortB out | std_logic 1 AXI Stream frame

Valid_ValOut _ output

AxisTxPortB in std_logic 1 P

Ready_Valin _

AxisTxPortB out | std_logic_vector 32

Data_DatOut

AxisTxPortB out | std_logic_vector 4

BStrobe_ValOut

AxisTxPortB out | std_logic_vector 4

Keep_ ValOut

AxisTxPortB out | std_logic 1

Last_ValOut

AxisTxPortB out | std_logic_vector 3

User DatOut

Enable Input

Enable_Enaln in std_logic 1 Enable core

Table 16: Port C

RedHsrPrp Reference Manual 2.5 Page 66 of 98

/ Net Logic

4.2.3Proxy Node Processor

4.2.3.1 Entity Block Diagram

DD .T
ADDR ADD
- ADDR—I]
DAT,

NODE DAT/
& WH TABLE DAT
DATA
DATA & W DATA & WER

DATA & WE]

oy 3.om PROXY g DATA
o | Process

-
MAC & ‘
Mode & kl Q [DAT/

I—DATA & WE—————P»

ENTRY
TABLE

-ADDF >

Figure 13: Proxy Node Processor

4.2.3.2 Entity Description

The Proxy Process sequentiallizes incoming request and answers them respective-
ly.
There are three different kind of request:

e Node request: Returns the MAC of a specific address in the table

e SegNr reguest: Returns and increments the Sequence Number of a specific

node

e Node request: Checks if a specific node is in the table
It also does aging of the nodes so if a node is not there anymore the entry is
Cleared.

Node Tables

This module is the storage for the nodes connected to Port C. Per entry it contains
the MAC address and a timeout value for aging the nodes from the table.

There are multiple instances of the Node Table depending on the link speed and
number of nodes supported on port C. The reason for multiple instances is to
reduce the search duration in the table. A node is searched with linear search. This
is used by the Supervision Processor to figure out for which nodes Supervision
frames have to be sent, by Port A&B to decide where to forward a frame and by
Port C for tagging frames on a per node base.

Entry Table

RedHsrPrp Reference Manual 2.5 Page 67 of 98

// NetTimeLogic

GMBH

Per node there is exactly one entry in the Entry Table which stores the Sequence
Number for this node. This is only used by Port C for tagging.

4.2.3.3 Entity Declaration

Name Dir Type Size Description

Generics

General
Support for NO (ust

forward no drop-

NoSupport_Gen - boolean 1 _ _
ping, but duplica-

tion)
HsrSupport_Gen - boolean 1 Support for HSR
PrpSupport_Gen - boolean 1 Support for PRP
Support for HSR-
HsrPrpSupport_Gen - boolean 1
PRP RedBox
Support for HSR-
HsrHsrSupport_Gen - boolean 1
HSR RedBox
ClockClkPeriodNano- Integer Clock Period
- natural 1
second_Gen
If in Testbench
, simulation mode:
Sim_Gen - boolean 1

true = Simulation,
false = Synthesis

Proxy Node table

How many reques-
NumberOfPorts_Gen natural 1
tors are connected

How many nodes it
supports on the
NrOfProxyNodes_Gen - natural 1 non-redundant
network when run
as a RedBox
LinkSpeedSup- Either 100 or 1000

natural
port_Gen

Ports

System
SysClk_Clkin ' std_logic

SysRstN_RstIn ' std_logic

System Clock

System Reset

Own MAC Input

RedHsrPrp Reference Manual 2.5 Page 68 of 98

// NetTimeLogic

OwnMac_Datln

Timer

Timerims_Evtin

Mode Output

RedMode_Datln

Proxy Info Input

ProxyReqg_Datln

ProxyReqg_Valln
Proxy Info Output

ProxyResp DatOut

ProxyResp_ ValOut

Enable Input
Enable_Enaln

Table 17:

std_logic

Red_Mode Type

Red_ProxyRegArray
_Type

Common_Byte Type

Number
OfPorts
_Gen

MAC address of the
node

Millisecond timer
adjusted with the
Clock

Redundancy Mode:
Hsr E

Pro_E

HsrPrp E

HsrHsr E

No_ E

Proxy Table Proces-
sor request

out

Red_ProxyRegVal
Array_Type

Red_ProxyRespArra
y_Type

Number
OfPorts
_Gen

Number
OfPorts
_Gen

Proxy Table Proces-
sor request valid

Proxy Table Proces-
sor response

out

in

Red_ProxyRespVal
Array_Type

std_logic

Number
OfPorts
_Gen

Proxy Table Proces-
sor response valid

Enable core

Proxy Node Processor

RedHsrPrp Reference Manual 2.5

Page 69 of 98

/' NetlimeLogic

4.2.4Duplicate Processor

4.2.4.1Entity Block Diagram

D10 DUP —ADDR_>‘:28[D)§ N
——Timer—+ Process DATH o
MAC &
Node 8] ™| Q L

Figure 14: Duplicate Processor

4.2.4.2Entity Description

The Duplicate Process sequentiallizes incoming request and answers them respec-
tively.
There is only one kind of requests:

e Duplicate request: Returns if an entry is a duplicate or not
It checks if a frame with a specific Sequence Number from a specific node has been
seen on the other LAN already and signals that this is a duplicate. There are a
couple of other conditions which lead to signaling of a non-duplicate.
It also does aging of the entries so after 400ms when no duplicate is received the
entry is cleared.

Entry Table

This is a Hash table with Pools. The Pool size is 16 entries. The Hash is calculated
over the Source MAC and Sequence Number. Also, a Hash is stored for only the
MAC addresses. Per Entry it stores the Sequence Number, a part of the MAC Hash,
a Timeout and flags for this frame. First the Pool is addressed via the Hash and
then linear searched within the Pool. If no entry with the same MAC hash and
Sequence Number is found a new entry is added. If an entry was found and the
frame was already received on the other LAN the entry is cleared. If Sequence
Number and MAC Hash match but the flags do not match the entry is overwritten.

4.2.4.3Entity Declaration

Name Dir Type Size Description

Generics

General
NoSupport_Gen boolean Support for NO (ust

RedHsrPrp Reference Manual 2.5 Page 70 of 98

// NetTimeLogic

GMBH

forward no drop-
ping, but duplica-
tion)

HsrSupport_Gen

PrpSupport_Gen

HsrPrpSupport_Gen

HsrHsrSupport_Gen

PtpSupport_Gen

ClockClkPeriodNano-
second_Gen

boolean Support for HSR
boolean Support for PRP

Support for HSR-
boolean

PRP RedBox

Support for HSR-
boolean

HSR RedBox
boolean Support for PTP

Integer Clock Period
natural

Sim_Gen

Proxy Node table
NumberOfPorts_Gen

boolean

natural

If in Testbench

simulation mode:
true = Simulation,
false = Synthesis

How many reques-
tors are connected

NrOfEntries_Gen

How many entries
for duplicate detec-

LinkSpeedSup-
port_Gen

System
SysClk_ClkIn

natural _
tion shall be sup-
ported
Either 100 or 1000
natural

Ports

std_logic

System Clock

SysRstN_RstIn
Own MAC Input

OwnMac_Datln

Timer

Timerims_Evtin

Mode Output

RedMode_DatlIn

std_logic

Common_Byte Type

std_logic

Red_Mode_ Type

System Reset

MAC address of the
node

Millisecond timer
adjusted with the
Clock

Redundancy Mode:
Hsr E

RedHsrPrp Reference Manual 2.5

Page 71 of 98

/\/ NetTimeLogic

Link Input
PortALink_DatIn

std_logic

Pro_E

HsrPrp_ E
HsrHsr E
No_ E

Link state of Port A

PortALinkSpeed
_DatlIn

Common_LinkSpeed

PortBLink_Datln

PortBLinkSpeed
_DatlIn

Duplicate Info Input

DupReqg_Datln

in 1 Link speed of Port A
_Type

in std_logic 1 Link state of Port B

_ Common_LinkSpeed ,

in 1 Link speed of Port B

_Type

Red DupRegArray
_Type

Number
OfPorts
_Gen

Duplicate Processor
request

DupReqg_Valln
Proxy Info Output

DupResp_DatOut

Red DupRegVal
Array_Type

Red DupRespArray
_Type

Number
OfPorts
_Gen

Number
OfPorts
_Gen

Duplicate Processor
request valid

Duplicate Processor
response

DupResp_ValOut

Enable Input
Enable_Enaln

out

Red_DupRespVal
Array_Type

std_logic

Number
OfPorts
_Gen

Duplicate Processor
response valid

Enable core

Table 18;

Duplicate Processor

RedHsrPrp Reference Manual 2.5

Page 72 of 98

// NetTimeLogic

4.2.5Supervision Processor

4.2.5.1 Entity Block Diagram

~—AXIS S Al
I
- —AXISSC—

SupRXA SupRXB

Sup Timeout A=

Sup Timeout B~

Figure 15: Supervision Processor

4.2.5.2 Entity Description

Supervision Handler

This module receives frames from Ports A&B individually and checks it they are
Supervision frames. If a Supervision frame was detected on either of the ports it
signals this to the Supervision module. It also generates Supervision frames period-
ically for the node itself and if run in RedBox mode it sends supervision frames for
the nodes in the Proxy Node Table. The frames sent are sent untagged and with
cleared FCS since this is added and calculated in the Port C module.

Supervision

This module runs two individual timeout counters (one for Port A and B), which get
reset whenever a Supervision frame was received on the respective Port. If the
timeout value is reached, it signals this with the respective timeout signal.

4.2.5.3 Entity Declaration

Name Dir Type Size Description

Generics

General
Support for NO (ust

NoSupport_Gen forward no drop-
ping, but duplica-

RedHsrPrp Reference Manual 2.5 Page 73 of 98

// NetTimeLogic

GMBH

tion)

HsrSupport_Gen

PrpSupport_Gen

HsrPrpSupport_Gen

HsrHsrSupport_Gen

VlanSupport_Gen

boolean Support for HSR
boolean Support for PRP
Support for HSR-
boolean
PRP RedBox
Support for HSR-
boolean
HSR RedBox
boolean Support for VLAN

Sim_Gen

Supervision Processor

NrOfProxyNodes_Gen

System
SysClk_ClkIn

boolean

natural

Ports

std_logic

If in Testbench

simulation mode:
true = Simulation,
false = Synthesis

How many nodes it
supports on the
non-redundant
network when run
as a RedBox

System Clock

SysRstN_RstIn
Own MAC Input

OwnMac_Datln

VLAN Input
Vlan_Datln

std_logic

Common_Byte Type

Red_Vlan_Type

System Reset

MAC address of the
node

VLAN

VlanEnable DatIn

Mode Output

RedMode_DatlIn

Timer

Timerims_Evtin

std_logic

Red_Mode_ Type

std_logic

VLAN mode ena-
bled

Redundancy Mode:
Hsr E

Pro_E

HsrPrp_ E

HsrHsr_ E

No_E

Millisecond timer
adjusted with the

RedHsrPrp Reference Manual 2.5

Page 74 of 98

/‘/ NetTimeLogic

GMBH

Proxy Info Output

ProxyReq_DatOut

Clock

Proxy Table Proces-

ProxyReqg_ValOut

Proxy Info Input

ProxyResp Datin

ProxyResp_ Valln

SupervisionTimeout
PortA_DatOut

out | Red_ProxyReqg_Type 1
sor request
out Red_ProxyReqgVal__ : Proxy Table Proces-
Type sor request valid
" Red_ProxyResp__ : Proxy Table Proces-
Type SOr response
i Red_ProxyRespVal_ : Proxy Table Proces-

Supervision TimeoutOutput

Type

sor response valid

Supervision frame

SupervisionTimeout
PortB_DatOut

Axi RX Port A Input
AXxisRxPortA
Valid_Valln

AXisRxPortA
Ready_Valln

AXxisRxPortA
Data_Datln

AxisRxPortA
Strobe Valln

AXisRxPortA
Keep_Valln

AXxisRxPortA
Last Valln

AXxisRxPortA

User_ Datln

Axi RX Port B Input
AxisRxPortB
Valid_Valln

AXxisRxPortB
Ready_Valln

AXxisRxPortB
Data_Datln

AxisRxPortB
Strobe Valln

AXxisRxPortB
Keep_Valln

AXxisRxPortB
Last Valln

AxisRxPortB
User Datln

Axi RX Port C Input
AxisRxPortC
Valid_Valln

out | std_logic 1 ,
timeout on Port A
_ Supervision frame
out | std_logic 1 ,
timeout on Port B
in | std_logic 1 AXI Stream frame
: : input
in | std_logic 1
in std_logic_vector 32
in std_logic_vector 4
in std_logic_vector 4
in std_logic 1
in std_logic_vector 3
in | std_logic 1 AXI Stream frame
: : input
in | std_logic 1
in std_logic_vector 32
in std_logic_vector 4
in std_logic_vector 4
in std_logic 1
in | std_logic_vector 3

RedHsrPrp Reference Manual 2.5

Page 75 of 98

// NetTimeLogic

GMBH

AxisRxPortC
Ready Valln

input

AXxisRxPortC
Data_Datln

AxisRxPortC
Strobe Valln

AXisRxPortC
Keep_Valln

AXxisRxPortC
Last Valln

AxisRxPortC

User_ Datln

Axi TX Port S AB Output
AxisTxPortSAB
Valid_ValOut

AXI| Stream frame

AXxisTxPortSAB
Ready_Valln

output

AxisTxPortSAB
Data_DatOut

AxisTxPortS
BStrobe ValOut

AXxisTxPortSAB
Keep_ValOut

AxisTxPortSAB
Last ValOut

AxisTxPortSAB

User DatOut

Axi TX Port S C Output
AXisTxPortSC
Valid_ValOut

AX| Stream frame

AXisTxPortSC
Ready_Valln

output

AxisTxPortSC
Data_DatOut

AxisTxPortSC
BStrobe_ValOut

AXisTxPortSC
Keep_ValOut

AxisTxPortSC
Last ValOut

AXisTxPortSC
User_ DatOut
Enable Input

Enable_Enaln

in | std_logic 1
in std_logic_vector 32
in std_logic_vector 4
in | std_logic_vector 4
in std_logic 1
in std_logic_vector 3
out | std logic 1
in | std_logic 1
out | std_logic_vector 32
out | std logic_vector 4
out | std_logic_vector 4
out | std logic 1
out | std logic_vector 3
out | std_logic 1
in std_logic 1
out | std logic_vector 32
out | std_logic_vector 4
out | std_logic_vector 4
out | std logic 1
out | std_logic_vector 3
in std_logic 1

Enable core

Table 19:

Supervision Processor

RedHsrPrp Reference Manual 2.5

Page 76 of 98

// NetTimeLogic

4.2.6 Sequence Number Processor

4.2.6.1Entity Block Diagram

~-Seq 1.0]
Mode—

Figure 16: Sequence Numlber Processor

4.2.6.2 Entity Description

Sequence Number Processor

This module answers Sequence Number requests sequentially, so that each reques-
tor gets a unique Sequence Number. The Sequence Number is incremented by 1 for
each request wrapping through O (16bit).

4.2.6.3Entity Declaration

Name Dir Type Size Description

Generics

General
Support for NO (ust

forward no drop-

NoSupport_Gen - boolean 1 _ _
ping, but duplica-

tion)
HsrSupport_Gen - boolean 1 Support for HSR
PrpoSupport_Gen - boolean 1 Support for PRP

Support for HSR-
HsrPrpSupport_Gen - boolean 1

PRP RedBox

Support for HSR-
HsrHsrSupport_Gen - boolean 1

HSR RedBox

Proxy Node table

How many reques-
NumberOfPorts_Gen

tors are connected

System
SysClk_ClkIn [std_logic

SysRstN_RstIn in std_logic 1 System Reset

System Clock

RedHsrPrp Reference Manual 2.5 Page 77 of 98

// NetTimeLogic

GMBH

Mode Output

Redundancy Mode:
Hsr E

Pro_E

HsrPrp_ E

HsrHsr_E

No_E

RedMode_DatIn in | Red_Mode_Type 1

Red SegRegArray T | number | Segquence Number

in OfPorts
SegReq_Datln ype _Gen Processor request
Sequence Number
_ Red_SegRegVal Number 5 ;
in OfPorts rocessor regues
SegReqg_Valln Array_Type o

valid

Sequence Number Info Output
Red_SegRespArray_ | numeer | Sequence Number
SegResp_DatOut out OfPorts

Type cen | Processor response
Sequence Number
; Red_SegRespVal Number 5
ou OfPorts rocessor response
SegResp_ValOut Array_Type oo

valid

Table 20: Sequence Number Processor

RedHsrPrp Reference Manual 2.5 Page 78 of 98

Net Logic
v

4.2.7 Ethernet Interface Adapter

4.2.7.1 Entity Block Diagram

RXITF
(R)(G)MII RX—H1 ADAPTER —1— AXIS—-

TXITF
REMITY S orer [

Figure 17: Ethernet Interface Adapter

4.2.7.2Entity Description

RX Interface Adapter

This module convert the Media Independent Interface (R)(G)MIl data stream
(2/4/8bit) into a 32bit AXI stream. First bytes on the cable are mapped to the AXI
MSB of the data array. It contains an asynchronous Fifo to on one hand do clock
domain crossing from the external clock to the system clock and on the other hand
also to minimal buffer data for speed differences. The Fifo size is kept quite small
to assure correct timestamp alignment with the frame. It converts the different
data widths into a 32bit block AXI stream. The Preamble and SFD are removed on
reception.

TX Interface Adapter

This module convert the 32bit AX| stream into a Media Independent Interface
(R)(G)MII data stream (2/4/8bit) which is continuous. The MSB of the AXI data
array is mapped to the first byte on the cable. It contains an asynchronous Fifo to
on one hand do clock domain crossing from the system clock to the external clock
and on the other hand also to minimal buffer data for speed differences. The Fifo
size is kept quite small to assure correct timestamp alignment with the frame. It
converts the 32bit block AXI stream into the different data widths. The Preamble
and SFD are added before transmission. It also assures the correct interframe gap
between frames.

RedHsrPrp Reference Manual 2.5 Page 79 of 98

/\/ NetTimeLogic

4.2.7.3 Entity Declaration

Name

Interface Adapter

loFf_Gen

Dir Type

Generics

- boolean

Size Description

Shall 1O flip flops be
instantiated

ClockClkPeriodNano-
second_Gen

System
SysClk_ClkIn

- natural

Ports

in | std_logic

Integer Clock Period

System Clock

SysRstN_RstIn

(R)(G)Mii RX Clk/Rst Input

(RY(G)MiiRxClk_ClkIn

in | std_logic

in

std_logic

System Reset

RX Clock

(R)(G)MIiiRxRstN_Rstl
n

(R)(G)Mii TX Clk/Rst Input

(RY(G)MIiTxClk_CIkIn

in std_logic

in std_logic

Reset aligned with
RX Clock

TX Clock

(R)(G)MiiTxRstN_Rstl
n

in std_logic

(R)(G)Mii RX Data Input/Output

(R)(G)MiiRxDv_Ena

Reset aligned with
TX Clock

(R)(G)MIiRxErr_Ena

(R)(G)MiiRxData_Dat

(R)(G)MiiCol_Dat

(R)(G)MiiCrs_Dat
(R)(G)Mii TX Data Input

(R)(GMIITXEn_Ena

(R)(G)MIiTxXErr_Ena

(R)(G)MiiTxData_Dat

In/ _ RX Data valid
std_logic 1

out

In/ _ RX Error
std_logic 1

out

n/ RX Data

n

; std_logic_vector 2-8 | Mll:4, RMII:2, GMII8,
ou
RGMII4

In/ _ Collision
std_logic 1

out

In/ _ Carrier Sense
std_logic 1

out

In/ , TX Data valid
std_logic 1

out

In/ _ TX Error
std_logic 1

out

In/ | std_logic_vector 2-8 | TX Data

RedHsrPrp Reference Manual 2.5

Page 80 of 98

// NetTimeLogic

GMBH

out Mll:4, RMII:2, GMII:8,
RGMII:4
AXi Input
AxisValid_Valln in | std_logic 1 AX| Stream frame
AxisReady_ValOut out | std_logic 1 |input
AxisData_DatIn in | std_logic_vector 32
AxisStrobe_Valln in | std_logic_vector 4
AxisKeep_Valln in | std_logic_vector 4
AxisLast_Valln in | std_logic T
AxisUser_DatIn in std_logic_vector 3
Axi Output
AxisValid_ValOut out | std_logic [AX| Stream frame
AxisReady_Valln in | std_logic 1 output
AxisData_DatOut out | std logic_vector 32
AxisStrobe_ValOut out | std_logic_vector 4
AxisKeep_ValOut out | std_logic_vector 4
AxisLast_ValOut out | std_logic 1
AxisUser_DatOut out | std_logic_vector 3

Table 21 Ethernet Interface Adapter

RedHsrPrp Reference Manual 2.5 Page 81 of 98

// NetTimeLogic

4.2.8 Registerset

4.2.8.1 Entity Block Diagram

~-AXI MI
Static

Enable——»
1
—_— 1 Link & Port Status——
Config
Static,
<_Slatus MAC &

Mode &
VLANs &
IDs

'

Figure 18: Registerset

4.2.8.2 Entity Description

Register Set

This module is an AXI4Lite Memory Mapped Slave. It provides access to all regis-
ters and allows configuring the RED HsrPrp Core. AXl4Lite only supports 32 bit
wide data access, no byte enables, no burst, no simultaneous read and writes and
no unaligned access. It can be configured to either run in AXI| or StaticConfig mode.
If in StaticConfig mode, the configuration of the registers is done via signals and
can be easily done from within the FPGA without CPU. For each parameter a valid
signal is available, the enable signal shall be set last (or simultaneously). To change
configuration parameters the core has to be disabled and enabled again. If in AXI
mode, an AXI| Master has to configure the registers with AXI writes to the registers,
which is typically done by a CPU. Parameters can in this case also be changed at
runtime.

In addition it counts frames and errors of all ports to allow status supervision. This
only when the generic PortStatusSupport_Gen is true

4.2.8.3 Entity Declaration

Name Dir Type Size | Description

Generics

General

Support for NO (ust

forward no drop-
NoSupport_Gen boolean _ ,

ping, but duplica-

tion)

RedHsrPrp Reference Manual 2.5 Page 82 of 98

// NetTimeLogic

GMBH

HsrSupport_Gen

boolean

Support for HSR

PrpSupport_Gen

boolean

Support for PRP

HsrPrpSupport_Gen

boolean

Support for HSR-
PRP RedBox

HsrHsrSupport_Gen

boolean

Support for HSR-
HSR RedBox

CutThrough_Gen

boolean

Support for Cut
Through frame
handling

VlanSupport_Gen

boolean

Support for VLAN

TailTagging_Gen

Register Set
StaticConfig_Gen

boolean

boolean

Support for Tail
tagging and untag-
ging to define to
send to specific
ports and to know
from which port it
was received

If Static Configura-
tion or AXl is used

PortStatus
Support_Gen

boolean

If frames and error
counters shall be
available in the
registerset

AxiAddressRange
Low_Gen

AX| Base Address

AxiAddressRange
High_Gen

System
SysClk_ClkIn

SysRstN_RstIn
Config

StaticConfig_Datln

StaticConfig_Valin

- std_logic_vector 32
AX| Base Address

- std_logic_vector 32 plus Registerset
Size

Ports

in std_logic 1 System Clock

in std_logic 1 System Reset

_ Red HsrPrp : Static Configuration

in

StaticConfig_Type
_ Red HsrPrp : Static Configuration
in

StaticConfigVal

valid

RedHsrPrp Reference Manual 2.5

Page 83 of 98

// NetTimeLogic

GMBH

Status
StaticStatus_DatOut out

StaticStatus_ValOut out

Port Status Input

PortStatus in
PortA_Datln

_Type

Red_HsrPrp : Static Status
StaticStatus_Type

Red_HsrPrp Static Status valid

StaticStatusVal
_Type

PortStatus in
PortB_DatIn

PortStatus in
PortC_DatlIn

AXl4 Lite Slave
AxiWriteAddrValid in
_Valln

Red_Port : Port Status
Status_Type
Red_Port : Port Status
Status_Type
Red_Port Port Status

Status_Type

std_logic

Write Address Valid

AxiWriteAddrReady out
_RdyOut

std_logic

Write Address
Ready

AxiWriteAddrAddress in
_Adrin

AxiWriteAddrProt in
_Datin

AxiWriteDataValid in
_Valln

AxiWriteDataReady out
_RdyOut

AxiWriteDataData in
_Datin

AxiWriteDataStrobe in
_Datin

AxiWriteRespValid out
_ValOut

AxiWriteRespReady in
_Rdyln

AxiWriteResp out
Response_DatOut

AxiReadAddrValid in
_Valln

AxiReadAddrReady out
_RdyOut

AxiReadAddrAddress in
_Adrin

AxiReadAddrProt in
_Datln

std_logic_vector 32 | Write Address
, Write Address
std_logic_vector 3
Protocol
std_logic 1 Write Data Valid
std_logic 1 Write Data Ready
std_logic_vector 32 | Write Data
std_logic_vector 4 Write Data Strobe
. Write Response
std_logic 1 _
Valid
. Write Response
std_logic 1
Ready
std_logic_vector 2 Write Response
std_logic 1 Read Address Valid
, Read Address
std_logic 1
Ready
std_logic_vector 32 | Read Address
std_logic_vector 3 Read Address

RedHsrPrp Reference Manual 2.5

Page 84 of 98

// NetTimeLogic

GMBH

AxiReadDataValid
_ValOut
AxiReadDataReady
_RdylIn
AxiReadData
Response DatOut

AxiReadDataData
_DatOut

Timeout Input
SupervisionTimeout
PortA_Datln
SupervisionTimeout

PortB_DatIn

Own MAC Output
OwnMac_DatOut

VLAN Output
Vlan_DatOut

VlanEnable_DatOut

Mode Output

RedMode_ DatOut

RedBoxNetld_DatOut

RedBoxld_DatOut

Promiscuous-
Mode DatOut

CutThrough_ValOut

NoForward_DatOut

Protocol
out | std_logic 1 Read Data Valid
in std_logic 1 Read Data Ready
out | std logic_vector 2 Read Data
_ Read Data Re-
out | std_logic_vector 32
sponse
Whether Port A has
in std_logic 1 a Supervision
timeout
Whether Port B has
in std_logic 1 a Supervision
timeout
MAC address of the
out | Common_Byte Type 6
node
out | Red Vlan_Type 6 VLAN
_ VLAN mode ena-
out | std_logic 1
bled
Redundancy Mode:
Hsr E
Pro_E
out | Red_Mode_ Type 1
HsrPrpo E
HsrHsr E
No_E
RedBox Network
out | std_logic_vector 3 Identifier for HSR-
PRP mode
_ RedBox Identifier
out | std logic_vector 4
for HSR-PRP mode
_ If in Promiscuous
out | std logic 1
mode
_ If cut through shall
out | std logic 1
be enabled
_ If forwarding be-
out | std logic 1

tween Ports A & B

RedHsrPrp Reference Manual 2.5

Page 85 of 98

// NetTimeLogic

GMBH

shall be disabled

TailTagging_DatOut out

If Tail Tagging shall

ProUntagging out
DatOut

Enable Output
RedHsrPrp out
Enable DatOut

std_logic
be done
_ If PRP frames shall
std_logic
be untagged
std_logic Enables the core

Table 22: Registerset

RedHsrPrp Reference Manual 2.5

Page 86 of 98

/ Net Logic

4.3 Configuration example

In both cases the enabling of the core shall be done last, after or together with the

configuration.

4.3.1 Static Configuration

Figure 19:

4.3.2 AXI Configuration

constant RedStaticConfigHsrPrp Con :

OwnMac

0

1

2

3

4

5
RedMode
RedBoxNetId
RedBoxId
NoForward
PromiscuousMode
PrpUntagging
TailTagging
CutThrough
Vlan

Pcp

Dei

vid

VlanEnable

constant RedStaticConfigValHsrPrp Con

Vlan Val
Enable Val

Static Configuration

Red HsrPrpStaticConfig Type := (

:>(

=> x"00",
=> x"01",
=> x"02",
=> x"03",
=> x"04",
=> x"05",
=> Hsr_E,
=> "Q010",
=> x"A",
= '0",
= '0"',
= '0"',
= '0"',
= '1"',
:>(

=> "100",
=> '0",
=> x"004"),

=> '1"'

: Red HsrPrpStaticConfigVal Type := (

= '1',

=> '1"'

The following code is a simplified pseudocode from the testbench: The base ad-
dress of the RED HsrPrp Core is Ox10000000.

-- RED HSR/PRP

-- Config

-- Mode Hsr

AXI WRITE 10000084 00000002

-- VLAN valid and 4

AXI WRITE 10000088 00010004

RedHsrPrp Reference Manual 2.5

Page 87 of 98

/\/ NetTimeLogic

-- Mode and VLAN valid

AXI WRITE 10000080 00000003

-- Own MAC 00:01:02:03:04:05
AXI WRITE 10000104 03020100

AXI WRITE 10000108 00000504

-- MAC valid

AXI WRITE 10000100 00000001

-- Enable

AXI WRITE 10000000 00000001

Figure 20: AXI Configuration

In the example the VLAN is enabled and Promiscuous Mode is disabled.

RedHsrPrp Reference Manual 2.5 Page 88 of 98

// NetTimeLogic

4.4 Clocking and Reset Concept

4.4.1 Clocking

To keep the design as robust and simple as possible, the whole RED HsrPrp Core,
including the Counter Clock and all other cores from NetTimelogic are run in one
clock domain. This is considered to be the system clock. Per default this clock is
50MHz. Where possible also the interfaces are run synchronous to this clock. For
clock domain crossing asynchronous fifos with gray counters or message patterns
with meta-stability flip-flops are used. Clock domain crossings for the AXI interface
is moved from the AXI slave to the AXI interconnect.

Clock Frequency Description

System

50MHz
(Default) runs on as well as the counter clock etc.

System clock where the RED HsrPrp
System Clock

(R)(G)MII Interface

Asynchronous, external receive clock
PHY (R)(G)MII RX from the PHY also used for the MAC.
2.5/25/125MHz , .
Clock Depending on the interface not all fre-

quencies apply.

Asynchronous, external transmit clock

PHY (R)(G)MII TX to/from the PHY also used for the MAC.
2.5/25/125MHz , .
Clock Depending on the interface not all fre-
quencies apply.

AXI Interface
AXI Clock

50MHz
(Default) system clock

Internal AXI bus clock, same as the

Table 23: Clocks

4.4 2Reset

In connection with the clocks, there is a reset signal for each clock domain. All
resets are active low. All resets can be asynchronously set and shall be synchro-
nously released with the corresponding clock domain. All resets shall be asserted
for the first couple (around 8) clock cycles. All resets shall be set simultaneously
and released simultaneously to avoid overflow conditions in the core. See the
reference designs top file for an example of how the reset shall be handled.

RedHsrPrp Reference Manual 2.5 Page 89 of 98

// NetTimeLogic

Reset

System

System Reset

(R)(G)MII Interface
PHY (R)(G)MII RX

Reset

Polarity

Active low

Active low

Description

Asynchronous set, synchronous release

with the system clock

Asynchronous set, synchronous release
with the (R)(G)MII RX clock

PHY (R)(G)MII TX
Reset
AXI| Interface

AX| Reset

Active low

Active low

Asynchronous set, synchronous release
with the (R)(G)MII TX clock

Asynchronous set, synchronous release
with the AXI clock, which is the same as
the system clock

Table 24 Resets

RedHsrPrp Reference Manual 2.5

Page 90 of 98

/\/ NetTimeLogic

5 Resource Usage

Since the FPGA Architecture between vendors and FPGA families differ there is a
split up into the two major FPGA vendors.

5.1 Intel/Altera (Cyclone V)

Configuration

Minimal

(PRP, DAN, no VLAN, 16k entries,
static config, 100Mbit)

Maximal

(HSR&PRP, RedBox, VLAN, 32k
entries, 128 proxy, AXI, 1000Mbit)

Table 25: Resource Usage Intel/Altera

5.2 AMD/Xilinx (Kintex 7)

Configuration
Minimal
(PRP, DAN, no VLAN, 16k entries,

static config, 100Mbit)

Maximal

(HSR&PRP, RedBox, VLAN, 32k
entries, 128 proxy, AXI, 1000Mbit)

Table 26: Resource Usage AMD/Xilinx

RedHsrPrp Reference Manual 2.5 Page 91 of 98

/' NetlimeLogic

6 Delivery Structure

AXTI -- AXI library folder
|-Library -- AXI library component sources
| -Package -- AXI library package sources
CLK -- CLK library folder
| -Package -- CLK library package sources
COMMON -- COMMON library folder
|-Library -- COMMON library component sources
| -Package -- COMMON library package sources
PTP -- PTP library folder
| -Package -- PTP library package sources
RED -- RED library folder
| -Core -- RED library cores
| -Doc -- RED library cores documentations
|-Library -- RED library component sources
| -Package -- RED library package sources
| -Refdesign -- RED library cores reference designs
| -Testbench -- RED library cores testbench sources and sim/log
SIM -- SIM library folder
| -Doc -- SIM library command documentation
| -Package -- SIM library package sources
| -Testbench -- SIM library testbench template sources
|-Tools -- SIM simulation tools

RedHsrPrp Reference Manual 2.5 Page 92 of 98

/' NetlimeLogic

7 Testbench

The HSR&PRP Core testbench consist of 2 parse/port types: AXI and ETH. Multiple
instances exist. PHY A&B ETH ports are connected to the port going to the PHY
from the DUT (which acts like a MAC). MAC C is connected to the port going to the
MAC from the DUT (which acts like a PHY). A Clock instance provides the Tms
timer event for the DUT.

In addition for configuration and result checks an AXI read and write port is used in
the testbench and for accessing more than one AXI slave also an AXI interconnect

is required.

Figure 21 Testbench Framework

For more information on the testbench framework check the Sim_ReferenceManual

documentation.

With the Sim parameter set the time base for timeouts are divided by 1000 to
100000 to speed up simulation time.

7.1 Run Testbench

1. Run the general script first

source XXX/SIM/Tools/source_with_args.tcl

2. Start the testbench with all test cases
src XXX/RED/Testbench/Core/RedHsrPrp/Script/run Red HsrPrpMii Tb.tcl

3. Check the log file LogFilel.txt in the
XXX/RED/Testbench/Core/RedHsrPrp/Log/ folder for simulation results.

RedHsrPrp Reference Manual 2.5 Page 93 of 98

/' NetlimeLogic

8 Reference Designs

The HSR&PRP Core reference design contains a PLL to generate all necessary
clocks (cores are run at 50 MHZz), an instance of the RED HsrPrp Core IP core and
an instance of the Adjustable Counter Clock IP core (needs to be purchased sepa-
rately). The Reference Design is intended to be connected to any HSR or PRP
device handling redundancy according to IEC 62439-3 or it can be set to NON
mode and a daisy chain can be built.

All generics can be adapted to the specific needs.

RedRefDesign

~-Ethemet A
1
~a-Ethemet B:

1
~a-Ethemet C: Timel

Figure 22: Reference Design

8.1 AMD/Xilinx: Digilent NetFpga

The NetFpga board is an FPGA board from Digilent Inc. with a Kintex7 FPGA from
AMD/Xilinx. (http://store.digilentinc.com/netfpga-1g-cml-kintex-7-fpga-

development-board)

1. Open Vivado 2019.1.
Note: If a different Vivado version is used, see chapter 8.2.

2. Run TCL script
/RED/Refdesign/Xilinx/NetFpga/RedHsrPrpMii/RedHsrPrp.tcl

a. This has to be run only the first time and will create a new Vivado Pro-
ject

3. If the project has been created before open the project and do not rerun the
project TCL

4. Rerun implementation

5. Download to FPGA via JTAG

RedHsrPrp Reference Manual 2.5 Page 94 of 98

http://store.digilentinc.com/netfpga-1g-cml-kintex-7-fpga-development-board
http://store.digilentinc.com/netfpga-1g-cml-kintex-7-fpga-development-board

/' NetlimeLogic

Port B

Soft Reset Alive-LED

Figure 23: NetFPGA (source Digilent Inc)

8.2 AMD/Xilinx: Vivado version

The provided TCL script for creation of the reference-design project is targeting
AMD/Xilinx Vivado 2019.1.

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or
higher.

If a higher Vivado version is used, the following steps are recommended:

e Before executing the project creation TCL script, the script's references of
Vivado 2019 should be manually replaced to the current Vivado version. For
example, if version Vivado 2022 is used, then:

o The statement occurrences:
set property flow "Vivado Synthesis 2019" S$Sobj
shall be replaced by:
set property flow "Vivado Synthesis 2022 $Sobj
o The statement occurrences:
set property flow "Vivado Implementation 2019" Sobj
shall be replaced by:
set property flow "Vivado Implementation 2022" $Sobj

e After executing the project creation TCL script, the AMD/Xilinx IP cores,
such as the Clocking Wizard core, might be locked and a version upgrade
might be required. To do so:

RedHsrPrp Reference Manual 2.5 Page 95 of 98

Net Logic
v

1. At "Reports” menu, select "Report IP Status"”.
2. At the opened "IP Status” window, select "Upgrade Selected"”. The tool
will upgrade the version of the selected IP cores.

RedHsrPrp Reference Manual 2.5 Page 96 of 98

/ Net Logic

A List of tables

Table T

Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10:
Table 1
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:

Table 20:

Table 21:

Table 22:
Table 23:
Table 24
Table 25:
Table 26:

REVISION HISTONY o ittt 5
D BT NITIONS 1. 8
ADDIEVIATIONS Lot 9
ReGISEEr SEEL OVEIVIEW ..o e 23
P AIAIMETELS ettt 41
REA S EOR GO T Y0 oo 42
Red SeOREAV AL T Y00 e 42
RO S OUR U T Y08 oo et 42
Red SeOREAV AL T Y00 oo e e 43
Red HSrProStatiCCoONT I Ty D e et 44
Red _HsrProStaticConfigVal Ty e e e 44
Red HSrProStatiCStatus TV e e 44
Red HsrProStaticStatusVal _TYPe e 45
RED HSIPIO COl@ oo e e e 53
PO AGB e 59
PO C oot 66
ProXy NOAE PrOCESSON ..ottt 69
DUPRHCAEE PrOCESSON .ot 72
SUREINVISION PrOCESSON oottt 76

Sequence NUMDEr ProCESSOL ..., 78
Ethernet Interface AdaRLer. e, 81
REGISTOISET e 86

ClOCKS et 89

R S EES s 90
RESOUICE USAGE INTI/AILEIG c.ov oottt 91

ResoUrce USAge AMD,/ XIINX oottt 91

B List of figures

Figure 1.
Figure 2.
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

ConteXt BIOCK DIiagram .ot 1
Architecture BIOCK DIagrami . ettt 12
P R s 16
PRP MG s 16
H S R e 18
HSR FraMIE oo 18
Taill TAGGEA FrAMIE e e 21

RedHsrPrp Reference Manual 2.5 Page 97 of 98

/ Net Logic

Figure 9:

Figure 10:
Figure 11:

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21
Figure 22:

Figure 8: RED HSIPYIP CO @ oo e e, 46
POFT AGB e 54
RX PIOCESSON ittt 54
POFT e 60
X P EOCES SO ettt 60
ProXy NOAE PrOCESSON ..o 67
DUPRHCAEE PrOCESSON ..ot 70
SUREIVISION PrOCESSON .ottt 73
Sequence NUMDEr ProCESSOI ...t 77
Ethernet Interface AdapIer.. e 79
REGISTOISET e, 82
Static CoNfIGUIATION ..o, 87
AXT CONFIGUIATION .o, 88
TesthenCh FrameWOrK e 93
REFEIENCE DOSION ..o 94
NetFPGA (source DIgilent INC) oo, 95

Figure 23:

RedHsrPrp Reference Manual 2.5 Page 98 of 98

	1 Introduction
	1.1 Context Overview
	1.2 Function
	1.3 Architecture
	1.4 Deviations from the Standard or Limitations

	2 PRP, HSR and Tail Tagging Basics
	2.1 Network Redundancy (HSR/PRP) Basics
	2.1.1 PRP
	2.1.2 HSR
	2.1.3 NO
	2.1.4 DAN
	2.1.5 VDAN
	2.1.6 SAN
	2.1.7 RedBox
	2.1.8 Supervision

	2.2 Tail Tagging Basics

	3 Register Set
	3.1 Register Overview
	3.2 Register Descriptions
	3.2.1 General
	3.2.1.1 RED HsrPrp Control Register
	3.2.1.2 RED HsrPrp Status Register
	3.2.1.3 RED HsrPrp Version Register
	3.2.1.4 RED HsrPrp Frame Count Control Register
	3.2.1.5 RED HsrPrp RX Frame Count Registers
	3.2.1.6 RED HsrPrp RX Error Count Registers
	3.2.1.7 RED HsrPrp TX Frame Count Registers
	3.2.1.8 RED HsrPrp TX Error Count Registers
	3.2.1.9 RED HsrPrp Config Control Register
	3.2.1.10 RED HsrPrp Config Mode Register
	3.2.1.11 RED HsrPrp Config Vlan Register

	3.2.2 Mac
	3.2.2.1 RED HsrPrp Mac Control Register
	3.2.2.2 RED HsrPrp MAC 1 Register
	3.2.2.3 RED HsrPrp MAC 2 Register

	4 Design Description
	4.1 Top Level – RED HsrPrp
	4.1.1.1 Parameters
	4.1.1.2 Structured Types
	4.1.1.2.1 Red_SeqReq_Type
	4.1.1.2.2 Red_SeqReqVal_Type
	4.1.1.2.3 Red_SeqResp_Type
	4.1.1.2.4 Red_SeqRespVal_Type
	4.1.1.2.5 Red_HsrPrpStaticConfig_Type
	4.1.1.2.6 Red_HsrPrpStaticConfigVal_Type
	4.1.1.2.7 Red_HsrPrpStaticStatus_Type
	4.1.1.2.8 Red_HsrPrpStaticStatusVal_Type

	4.1.1.3 Entity Block Diagram
	4.1.1.4 Entity Description
	4.1.1.5 Entity Declaration

	4.2 Design Parts
	4.2.1 Port A&B
	4.2.1.1 Entity Block Diagram
	4.2.1.2 Entity Description
	4.2.1.3 Entity Declaration

	4.2.2 Port C
	4.2.2.1 Entity Block Diagram
	4.2.2.2 Entity Description
	4.2.2.3 Entity Declaration

	4.2.3 Proxy Node Processor
	4.2.3.1 Entity Block Diagram
	4.2.3.2 Entity Description
	4.2.3.3 Entity Declaration

	4.2.4 Duplicate Processor
	4.2.4.1 Entity Block Diagram
	4.2.4.2 Entity Description
	4.2.4.3 Entity Declaration

	4.2.5 Supervision Processor
	4.2.5.1 Entity Block Diagram
	4.2.5.2 Entity Description
	4.2.5.3 Entity Declaration

	4.2.6 Sequence Number Processor
	4.2.6.1 Entity Block Diagram
	4.2.6.2 Entity Description
	4.2.6.3 Entity Declaration

	4.2.7 Ethernet Interface Adapter
	4.2.7.1 Entity Block Diagram
	4.2.7.2 Entity Description
	4.2.7.3 Entity Declaration

	4.2.8 Registerset
	4.2.8.1 Entity Block Diagram
	4.2.8.2 Entity Description
	4.2.8.3 Entity Declaration

	4.3 Configuration example
	4.3.1 Static Configuration
	4.3.2 AXI Configuration

	4.4 Clocking and Reset Concept
	4.4.1 Clocking
	4.4.2 Reset

	5 Resource Usage
	5.1 Intel/Altera (Cyclone V)
	5.2 AMD/Xilinx (Kintex 7)
	5.3

	6 Delivery Structure
	7 Testbench
	7.1 Run Testbench

	8 Reference Designs
	8.1 AMD/Xilinx: Digilent NetFpga
	8.2 AMD/Xilinx: Vivado version

