

PtpTsu 10Gigabit Extension 0.2 Page 1 of 38

Ptp10GExtension

TSU Reference Manual

Product Info

Product Manager Sven Meier

Author(s) Sven Meier

Reviewer(s) -

Version 0.2

Date 25.10.2024

PtpTsu 10Gigabit Extension 0.2 Page 2 of 38

Copyright Notice

Copyright © 2025 NetTimeLogic GmbH, Switzerland. All rights reserved.

Unauthorized duplication of this document, in whole or in part, by any means, is

prohibited without the prior written permission of NetTimeLogic GmbH, Switzer-

land.

All referenced registered marks and trademarks are the property of their respective

owners

Disclaimer

The information available to you in this document/code may contain errors and is

subject to periods of interruption. While NetTimeLogic GmbH does its best to

maintain the information it offers in the document/code, it cannot be held respon-

sible for any errors, defects, lost profits, or other consequential damages arising

from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-

UCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES

WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES,

INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-

ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE

HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO

EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY

DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS

DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS

PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION

THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-

MENT/CODE.

PtpTsu 10Gigabit Extension 0.2 Page 3 of 38

Overview

NetTimeLogic’s PTP Timestamp Unit allows to create a PTP Ordinary Clock or

Boundary Clock with OneStep support according to IEEE1588-2019/2008 (PTP). It

takes timestamp for PTP frames and allows additional OneStep timestamp inser-

tion if intercepting the XGMII. This Document describes the 10 Gigabit Extension to

the PTP Timestamp Unit

Key Features:

• PTP Timestamp Unit according to IEEE1588-2019/2008 and IEEE802.1AS

• PTP frame detection and parsing

• Optional Passthrough Mode

• Optional PTP One Step functionality

• PTP event frame timestamping

• Optional Meta Information to safely match timestamps and frames

• Optional timestamp buffers for each frame type to handle also bursts of

frames and high PTP frame rates (requires Meta Information)

• Taps path between MAC and PHY

• Synchronization accuracy: +/- 25ns

• Support for Layer 2 (Ethernet) and Layer 3 (Ipv4 and IPv6), Peer to Peer

(P2P) and End to End (E2E).

• Support for Unicast Frames

• Master and Slave support

• Full line speed

• AXI4Lite register set

• Configurable Interrupt

• PHY Delay compensation with automatic link speed detection (in driver)

• XGMII Interface support

• Timestamp resolution with 50 MHz system clock: 10ns

• Optional High-Resolution Timestamping with 250MHz: 4ns

PtpTsu 10Gigabit Extension 0.2 Page 4 of 38

Revision History

This table shows the revision history of this document.

Version Date Revision

0.1 04.03.2022 First draft

0.2 25.10.2024 IEEE1588-2008 => IEEE1588-2019/2008

Table 1: Revision History

PtpTsu 10Gigabit Extension 0.2 Page 5 of 38

Content

1 INTRODUCTION 8

1.1 Context Overview 8

1.2 Function 9

1.3 Architecture 9

2 DESIGN DESCRIPTION 13

2.1 Top Level – PTP Ordinary Clock 13

2.2 Design Parts 21

2.2.1 XGMII Interface Adapter 21

2.2.2 Arbiter 24

2.2.3 PTP Filter and Splitter 26

2.2.4 TX Conversion FIFO 28

2.2.5 RX Conversion FIFO 31

2.2.6 Forwarding FIFO 34

2.3 Clocking and Reset Concept 36

2.3.1 Clocking 36

2.3.2 Reset 37

PtpTsu 10Gigabit Extension 0.2 Page 6 of 38

Definitions

Definitions

Ordinary Clock
A synchronization end node according to IEEE1588 that

can take a Master and Slave role

Transparent Clock
A network node (Switch) that is IEEE1588 aware and com-

pensates network jitter

Default Profile PTP Profile according to IEEE1588

Power Profile PTP Profile according to C37.238-2011

Utility Profile PTP Profile according to IEC 61850 9-3

TSN Profile PTP Profile according to IEEE802.1AS

Table 2: Definitions

Abbreviations

Abbreviations

AXI AMBA4 Specification (Stream and Memory Mapped)

IRQ Interrupt, Signaling to e.g. a CPU

PRP Parallel Redundancy Protocol (IEC 62439-3)

HSR High-availability Seamless Redundancy (IEC 62439-3)

PTP Precision Time Protocol (See also IEEE1588)

MAC Media Access Controller

PHY Physical Media Access Controller

OC Ordinary Clock

TC Transparent Clock

TS Timestamp

ETH Ethernet

TB Testbench

LUT Look Up Table

FF Flip Flop

PtpTsu 10Gigabit Extension 0.2 Page 7 of 38

RAM Random Access Memory

ROM Read Only Memory

FPGA Field Programmable Gate Array

VHDL Hardware description Language for FPGA’s

Table 3: Abbreviations

PtpTsu 10Gigabit Extension 0.2 Page 8 of 38

1 Introduction

1.1 Context Overview

The PTP Timestamp Unit is meant as a co-processor handling PTP timestamps on a

network port. It taps or passes through the Media Independent Interface

((R)(G)MII) on the Ethernet path between the MAC, Switch or Redundancy core

and PHYs where it detects and timestamps PTP traffic and optionally stores meta

information and buffers the timestamps or optionally does OneStep frame modifi-

cations. It compensates the timestamps for the PHY delays and generates a con-

figurable interrupt whenever a timestamp is ready for a specific frame type. The

CPU shall use these timestamps in a PTP software stack like PTP4l, PTPd, etc. to

synchronize the clock which is the base for the timestamps (Slave) or to distribute

time (Master).

The PTP Timestamp Unit is specifically designed for Systems on Chip (SoC) where

a CPU and FPGA part are often combined on the same silicon. In addition to the MII

tap, there is also a possibility to pass the MII through the TSU for OneStep opera-

tion also there is a possibility to feed PTP timestamp signals from another source

(e.g. PTP detector in a MAC), this is possible with e.g. a Xilinx® Zynq device. In this

case the frame processing is omitted and only the timestamp and register part is

used.

The PTP Timestamp Unit is designed to work in cooperation with the Counter

Clock core from NetTimeLogic (not a requirement). It contains an AXI4Lite slave

for configuration, status supervision ad fetching of the timestamps from a CPU.

PtpTsu 10Gigabit Extension 0.2 Page 9 of 38

PtpTimestampUnit

CLOCK
Adjustable Clock

Time &
Adjustment

A
XI

4
Li

te
 S

la
ve

CPU

AXI4L

MII RX

MII TX

Ethernet
PHY

MII RX

MII TX

Ethernet
MAC

IRQ

TS
Signals

MII RX

MII RX

MII RX

MII TX

MII TXMII TX

Figure 1: Context Block Diagram

1.2 Function

The PTP Timestamp Unit part is a PTP TSU according to IEEE1588-2019/2008 and

IEEE802.1AS. It detects PTP frames when they pass the MII and takes timestamps

of PTP event frames. It also compensates the PHY delays so the timestamps reflect

the time when the PTP frames entered or left the PHY on the cable, which is the

defined timestamp point according to IEEE1588-2019/2008. It can optionally also

insert timestamps on the fly for OneStep operation

1.3 Architecture

For 10 Gigabit the PTP Timestamp Unit was extended by a 10G XGMII wrapper

which basically handles all 10G traffic and just connects the PTP Timestamp Unit to

it so it can inject PTP traffic and receives PTP traffic only, allowing the PTP core to

run on a much slower link speed rate since PTP message rates are well below 10G.

This resulted in the following Architecture:

PtpTsu 10Gigabit Extension 0.2 Page 10 of 38

XGMII
 TX ITF

ADAPTER
ARBITER

RX
 CONV
FIFO

XGMII
RX ITF

ADAPTER

PTP FILTER
&

SPLITTER

TX
CONV
FIFO

AXIS
64bit

AXIS
64bit

AXIS
64bit

AXIS
64bit

XGMII
 TX ITF

ADAPTER

XGMII
RX ITF

ADAPTER

FORWARD
FIFO

FORWARD
FIFO

AXIS
64bit

AXIS
64bit

AXIS
64bit

AXIS
64bit

PTP
TSU
AXI

AXIS
32bit

AXIS
32bit

XGMII
TX

XGMII
RX

XGMII
TX

XGMII
RX

RX TS Event

TX TS Event

RX Clk RX Clk

TX ClkTX Clk

Drop

Drop

Req &
Grant Ptp

Req &
Grant Tx

Time &
Timer

Drop

ARBITER
TX

CONV
FIFO

RX
 CONV
FIFO

PTP FILTER
&

SPLITTER

Req &
Grant Tx

Drop

AXIS
64bit

AXIS
64bit

Req &
Grant Ptp

AXIS
64bit

AXIS
32bit

AXIS
32bit

AXIS
64bit

TX TS Event

TX Info

Ethernet
MAC

Ethernet
PHY

CLOCK
Adjustable Clock

AXI4 Lite Slave

AXI4 Lite Slave

PtpTimestampUnit 10G

Figure 2: Architecture Block Diagram

XGMII TX Interface Adapter

The XGMII TX Interface Adapter converts a 64bit AXI stream running on the XGMII

clock (156,25 MHz) to XGMII stream in 64bit mode (without DDR). It generates the

interframe gap of minimum 12 byte times, adds the Preamble and Start of Frame

Delimiter (SFD) and encodes the incoming AXI stream to the XGMII interface

(64bit data, 8bit control) using the control lines and special characters according

to the XGMII specification. Start of frame shall always be on Lane 0.

It is instantiated on the TX side of the PCS and on the RX side of the MAC.

XGMII RX Interface Adapter

The XGMII RX Interface Adapter converts a XGMII stream in 64bit mode (without

DDR) to a 64bit AXI stream running on the XGMII clock (156,25 MHz). It removes

the Preamble and Start of Frame Delimiter (SFD) and decodes the incoming XGMII

stream (64bit data, 8bit control) to the AXI stream interface using the control lines

and special characters according to the XGMII specification. Start of frame shall

always be on Lane 0 (or 4).

It is instantiated on the RX side of the PCS and on the TX side of the MAC.

Arbiter

The Arbiter arbitrates between the 10G forwarding path from the MAC to the PCS

and the PTP TSU core. It has request and grant lines and will do arbitration in a

round robin manner so that no path is starving.

PtpTsu 10Gigabit Extension 0.2 Page 11 of 38

PTP Filter and Splitter

This module splits the 64bit AXI stream coming from the XGMII RX Interface

Adapter into a 64bit AXI stream for the TSU and a 64bit AXI stream for the for-

warding path. It contains a frame parser which will check if a frame is a PTP frame

or not and will assert the according drop signal towards one of the connected

FIFOs.

TX Conversion FIFO

The TX Conversion FIFO has multiple functionalities. It converts the 32bit AXI

stream from the PTP TSU to a 64bit AXI stream and uses an asynchronous store-

and-forward FIFO to do the clock domain crossing and to be able to provide the

frame with 10G towards the XGMII TX Interface Adapter.

In addition, it detects the start of the frame and signals this to the PTP core (this is

done here since the path towards the XGMII Interface adapter is fully deterministic

and it is also a preparation for the one-step mode). The challenge here is to align

the timestamp event signal to the frame without inserting additional jitter.

RX Conversion FIFO

The RX Conversion FIFO has also multiple functionalities. It converts the 64bit AXI

stream from the XGMII Interface Adapter to a 32bit AXI stream and uses an asyn-

chronous store-and-forward FIFO to do the clock domain crossing and to be able

to handle the frame with 10G from the XGMII RX Interface Adapter before convert-

ing to the slower clock speed. It also has a drop input which is used to explicitly

drop the incoming frame. This is used by the PTP Filter and Splitter to drop Non-

PTP frames towards the PTP TSU.

In addition, it detects the start of the frame and signals this to the PTP core (this is

done here since the path from the XGMII Interface adapter is fully deterministic).

The challenge here is to align the timestamp event signal to the frame without

inserting additional jitter.

Forwarding FIFOs

This is a store-and-forward or cut-through frame drop FIFO, which means it can

drop a whole frame if it runs into an overflow condition. This is required since the

PTP core will use a small amount of bandwidth which could lead to an overload

condition. It also has a drop input which is used to explicitly drop the incoming

frame. This is used by the PTP Filter and Splitter to drop PTP frames on the for-

warding path. It also has a request and grant signal which is used for the arbitra-

tion. It is instantiated on the RX and TX forwarding path.

PtpTsu 10Gigabit Extension 0.2 Page 12 of 38

PTP Timestamp Unit

This is the actual PTP Timestamp Unit IP core from NetTimeLogic, it receives and

transmits PTP frames via 32bit AXI stream interfaces and has timestamp inputs

which can trigger a TX or RX timestamp in the core when the SFD on the corre-

sponding path was detected, it provides the TX frame length and receives the

calculated RX and TX delays with the timestamp indications.

PtpTsu 10Gigabit Extension 0.2 Page 13 of 38

2 Design Description

The following chapters describe the internals of the PTP Timestamp Unit 10G:

starting with the Top Level, which is a collection of subcores, followed by the

description of all subcores.

2.1 Top Level – PTP Ordinary Clock

2.1.1.1 Parameters

The core must be parametrized at synthesis time. It has the same parameters as

the Non-10G version, additionally the following parameters are available.

Name Type Size Description

RxDelayNanosecond

10000_Gen
integer 1

PHY receive delay (10Gbit)

TxDelayNanosecond

10000_Gen
integer 1

PHY transmit delay (10Gbit)

Table 4: Parameters

2.1.1.2 Entity Block Diagram

XGMII
 TX ITF

ADAPTER
ARBITER

RX
 CONV
FIFO

XGMII
RX ITF

ADAPTER

PTP FILTER
&

SPLITTER

TX
CONV
FIFO

AXIS
64bit

AXIS
64bit

AXIS
64bit

AXIS
64bit

XGMII
 TX ITF

ADAPTER

XGMII
RX ITF

ADAPTER

FORWARD
FIFO

FORWARD
FIFO

AXIS
64bit

AXIS
64bit

AXIS
64bit

AXIS
64bit

PTP
TSU
AXI

AXIS
32bit

AXIS
32bit

XGMII
TX

XGMII
RX

XGMII
TX

XGMII
RX

RX TS Event &
Adjustment

TX TS Event &
 Adjustment

RX Clk RX Clk

TX ClkTX Clk

AXI MM

Drop

Drop

Req &
Grant Ptp

Req &
Grant Tx

Time &
Timer

Drop Rx

+

Drop

+
Drop
Ptp

Drop

Drop

ARBITER
TX

CONV
FIFO

RX
 CONV
FIFO

PTP FILTER
&

SPLITTER

Req &
Grant Tx

Drop
+

Drop
Ptp

Drop Tx

+

Drop

Drop

AXIS
64bit

AXIS
64bit

Req &
Grant Ptp

AXIS
64bit

AXIS
32bit

AXIS
32bit

AXIS
64bit

TX TS Event &
 Adjustment

TX Info

Figure 3: PTP Timestamp Unit 10G

PtpTsu 10Gigabit Extension 0.2 Page 14 of 38

2.1.1.3 Entity Description

XGMII TX Interface Adapter

The XGMII TX Interface Adapter converts a 64bit AXI stream running on the XGMII

clock (156,25 MHz) to XGMII stream in 64bit mode (without DDR). It generates the

interframe gap of minimum 12 byte times, adds the Preamble and Start of Frame

Delimiter (SFD) and encodes the incoming AXI stream to the XGMII interface

(64bit data, 8bit control) using the control lines and special characters according

to the XGMII specification. Start of frame shall always be on Lane 0.

It is instantiated on the TX side of the PCS and on the RX side of the MAC.

See 2.2.1 for more details.

XGMII RX Interface Adapter

The XGMII RX Interface Adapter converts a XGMII stream in 64bit mode (without

DDR) to a 64bit AXI stream running on the XGMII clock (156,25 MHz). It removes

the Preamble and Start of Frame Delimiter (SFD) and decodes the incoming XGMII

stream (64bit data, 8bit control) to the AXI stream interface using the control lines

and special characters according to the XGMII specification. Start of frame shall

always be on Lane 0 (or 4).

It is instantiated on the RX side of the PCS and on the TX side of the MAC.

See 2.2.1 for more details.

Arbiter

The Arbiter arbitrates between the 10G forwarding path from the MAC to the PCS

and the PTP TSU core. It has request and grant lines and will do arbitration in a

round robin manner so that no path is starving.

See 2.2.2 for more details.

PTP Filter and Splitter

This module splits the 64bit AXI stream coming from the XGMII RX Interface

Adapter into a 64bit AXI stream for the TSU and a 64bit AXI stream for the for-

warding path. It contains a frame parser which will check if a frame is a PTP frame

or not and will assert the according drop signal towards one of the connected

FIFOs.

See 2.2.3 for more details.

TX Conversion FIFO

The TX Conversion FIFO has multiple functionalities. It converts the 32bit AXI

stream from the PTP TSU to a 64bit AXI stream and uses an asynchronous store-

PtpTsu 10Gigabit Extension 0.2 Page 15 of 38

and-forward FIFO to do the clock domain crossing and to be able to provide the

frame with 10G towards the XGMII TX Interface Adapter.

In addition, it detects the start of the frame and signals this to the PTP core (this is

done here since the path towards the XGMII Interface adapter is fully deterministic

and it is also a preparation for the one-step mode). The challenge here is to align

the timestamp event signal to the frame without inserting additional jitter.

See 2.2.4 for more details.

RX Conversion FIFO

The RX Conversion FIFO has also multiple functionalities. It converts the 64bit AXI

stream from the XGMII Interface Adapter to a 32bit AXI stream and uses an asyn-

chronous store-and-forward FIFO to do the clock domain crossing and to be able

to handle the frame with 10G from the XGMII RX Interface Adapter before convert-

ing to the slower clock speed. It also has a drop input which is used to explicitly

drop the incoming frame. This is used by the PTP Filter and Splitter to drop Non-

PTP frames towards the PTP TSU.

In addition, it detects the start of the frame and signals this to the PTP core (this is

done here since the path from the XGMII Interface adapter is fully deterministic).

The challenge here is to align the timestamp event signal to the frame without

inserting additional jitter.

See 2.2.5 for more details.

Forwarding FIFOs

This is a store-and-forward or cut-through frame drop FIFO, which means it can

drop a whole frame if it runs into an overflow condition. This is required since the

PTP core will use a small amount of bandwidth which could lead to an overload

condition. It also has a drop input which is used to explicitly drop the incoming

frame. This is used by the PTP Filter and Splitter to drop PTP frames on the for-

warding path. It also has a request and grant signal which is used for the arbitra-

tion. It is instantiated on the RX and TX forwarding path.

See 2.2.6 for more details.

PTP Ordinary Clock

This is the actual PTP Timestamp Unit IP core from NetTimeLogic, it receives and

transmits PTP frames via 32bit AXI stream interfaces and has timestamp inputs

which can trigger a TX or RX timestamp in the core when the SFD on the corre-

sponding path was detected, it provides the TX frame length and receives the

calculated RX and TX delays with the timestamp indications.

PtpTsu 10Gigabit Extension 0.2 Page 16 of 38

See the PTP Timestamp Unit Manual for details.

2.1.1.4 Entity Declaration

Name Dir Type Size Description

Generics

General

PassThrough_Gen - boolean 1

Whether the MII is

passed through or

tapped

OneStepSupport_Gen - boolean 1

Whether OnStep

support shall be

there, requires pass

through

DefaultProfile

Support_Gen
- boolean 1

Support for Default

Profile

PowerProfile

Support_Gen
- boolean 1

Support for Power

Profile

UtilityProfile

Support_Gen
- boolean 1

Support for Utility

Profile

TsnProfile

Support_Gen
- boolean 1

Support for

IEEE802.1AS

UnicastProfile

Support_Gen
- boolean 1

Support for Unicast

PTP messages

Layer2Support_Gen - boolean 1
Support for Layer 2

Mapping

Lay-

er3v4Support_Gen
- boolean 1

Support for IPv4

Mapping

Lay-

er3v6Support_Gen
- boolean 1

Support for IPv6

Mapping

RedTagSupport_Gen - boolean 1
If HSR or FRER tags

shall be detected

MetaInfo_Gen - boolean 1

If Meta Information

shall be stored with

the timestamp (this

is required if Buffer-

ing shall be done)

PtpTsu 10Gigabit Extension 0.2 Page 17 of 38

DelayReqRxBuffer

Depth_Gen
- natural 1

Buffer Depth for

Delay Request RX

Timestamps. 0 = No

buffering (>0 re-

quires MetaIn-

fo_Gen = true)

DelayReqTxBuffer

Depth_Gen
- natural 1

Buffer Depth for

Delay Request TX

Timestamps. 0 = No

buffering (>0 re-

quires MetaIn-

fo_Gen = true)

PDelayReqRxBuffer

Depth_Gen
- natural 1

Buffer Depth for

Peer Delay Request

RX Timestamps. 0 =

No buffering (>0

requires MetaIn-

fo_Gen = true)

PDelayReqTxBuffer

Depth_Gen
- natural 1

Buffer Depth for

Peer Delay Request

TX Timestamps. 0 =

No buffering (>0

requires MetaIn-

fo_Gen = true)

PDelayRespRxBuffer

Depth_Gen
- natural 1

Buffer Depth for

Peer Delay Re-

sponse RX

Timestamps. 0 = No

buffering (>0 re-

quires MetaIn-

fo_Gen = true)

PDelayRespTxBuffer

Depth_Gen
- natural 1

Buffer Depth for

Peer Delay Re-

sponse TX

Timestamps. 0 = No

buffering (>0 re-

quires MetaIn-

fo_Gen = true)

PtpTsu 10Gigabit Extension 0.2 Page 18 of 38

SyncRxBuffer-

Depth_Gen
- natural 1

Buffer Depth Sync

RX Timestamps. 0 =

No buffering (>0

requires MetaIn-

fo_Gen = true)

SyncTxBuffer-

Depth_Gen
- natural 1

Buffer Depth for

Sync TX

Timestamps. 0 = No

buffering (>0 re-

quires MetaIn-

fo_Gen = true)

ClockClkPeriodNano-

second_Gen
- natural 1

Integer Clock Period

RxDelayNanosecond

10000_Gen
- integer 1

RX Delay of the PHY

in Nanosecond

TxDelayNanosecond

10000_Gen
- integer 1

TX Delay of the PHY

in Nanosecond

HighResSupport_Gen - boolean 1

If a high-resolution

clock SysClkNx with

alignment to SysClk

is used

HighResFreq

Multiply_Gen
- natural 1

Multiplication factor

of the high-

resolution clock

compared to SysClk

AxiAddressRange

Low_Gen
- std_logic_vector 32

AXI Base Address

AxiAddressRange

High_Gen
- std_logic_vector 32

AXI Base Address

plus Registerset

Size

Sim_Gen - boolean 1
If in Testbench

simulation mode

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysClkNx_ClkIn in std_logic 1

High-resolution

clock (multiple of

Sys Clock)

PtpTsu 10Gigabit Extension 0.2 Page 19 of 38

SysRstN_RstIn in std_logic 1 System Reset

Time Input

ClockTime_DatIn in Clk_Time_Type 1
Adjusted PTP Clock

Time

ClockTime_ValIn in std_logic 1
Adjusted PTP Clock

Time valid

XGMii RX Clk/Rst Input

XGMiiRxClk_ClkIn in std_logic 1 RX Clock

XGMiiRxRstN_RstIn in std_logic 1
Reset aligned with

RX Clock

XGMii TX Clk/Rst Input

XGMiiTxClk_ClkIn in std_logic 1 TX Clock

XGMiiTxRstN_RstIn in std_logic 1
Reset aligned with

TX Clock

XGMii RX Data Input/Output

XGMiiRxCtl_Ena
in/

out
std_logic 8

RX Data valid

XGMiiRxData_Dat
in/

out
std_logic_vector 64

RX Data

XGMii TX Data Input/Output

XGMiiTxCtl_Ena
in/

out
std_logic 1

TX Data valid

XGMiiTxData_Dat
in/

out
std_logic_vector 64

TX Data

AXI4 Lite Slave
AxiWriteAddrValid
_ValIn

in std_logic 1 Write Address Valid

AxiWriteAddrReady
_RdyOut

out std_logic 1
Write Address

Ready

AxiWriteAddrAddress
_AdrIn

in std_logic_vector 32 Write Address

AxiWriteAddrProt
_DatIn

in std_logic_vector 3
Write Address

Protocol

AxiWriteDataValid
_ValIn

in std_logic 1 Write Data Valid

AxiWriteDataReady
_RdyOut

out std_logic 1 Write Data Ready

AxiWriteDataData
_DatIn

in std_logic_vector 32 Write Data

AxiWriteDataStrobe
_DatIn

in std_logic_vector 4 Write Data Strobe

AxiWriteRespValid
_ValOut

out std_logic 1
Write Response

Valid

PtpTsu 10Gigabit Extension 0.2 Page 20 of 38

AxiWriteRespReady
_RdyIn

in std_logic 1
Write Response

Ready

AxiWriteResp
Response_DatOut

out std_logic_vector 2 Write Response

AxiReadAddrValid
_ValIn

in std_logic 1 Read Address Valid

AxiReadAddrReady
_RdyOut

out std_logic 1
Read Address

Ready

AxiReadAddrAddress
_AdrIn

in std_logic_vector 32 Read Address

AxiReadAddrProt
_DatIn

in std_logic_vector 3
Read Address

Protocol

AxiReadDataValid
_ValOut

out std_logic 1 Read Data Valid

AxiReadDataReady
_RdyIn

in std_logic 1 Read Data Ready

AxiReadData
Response_DatOut

out std_logic_vector 2 Read Data

AxiReadDataData
_DatOut

out std_logic_vector 32
Read Data Re-

sponse

Interrupt Output
Irq_EvtOut out std_logic 1 Level high Interrupt

Table 5: PTP Timestamp Unit XGMII

PtpTsu 10Gigabit Extension 0.2 Page 21 of 38

2.2 Design Parts

The PTP Timestamp Unit core consists of a couple of subcores. Each of the sub-

cores itself consist again of smaller function block. The following chapters describe

these subcores and their functionality.

2.2.1 XGMII Interface Adapter

2.2.1.1 Entity Block Diagram

XGMII
 TX ITF

ADAPTER

XGMII
RX ITF

ADAPTER

AXIS
64bit

AXIS
64bit

XGMII
TX

XGMII
RX

RX Clk

TX Clk

XGMII
 TX ITF

ADAPTER

XGMII
RX ITF

ADAPTER

XGMII
TX

XGMII
RX

RX Clk

TX Clk

AXIS
64bit

AXIS
64bit

Figure 4: XGMII Interface Adapter

2.2.1.2 Entity Description

To have a deterministic delay, to have only a minimum of clock domains in the

design and to save resources, the AXI stream interface and the XGMII interface

shall run on the same clock per direction (RX/TX).

There are two different versions of the interface adapter, a MAC and PHY side

version. One is connected to the PHY and the other one to the MAC. Internally the

same components are used to handle XGMII, it is only a naming scheme.

For the interface adapter, all clocks are inputs, even if on a higher level the clock is

passed through, so it will be also an output of the overall design.

XGMII TX Interface Adapter

The XGMII TX Interface Adapter converts a 64bit AXI stream running on the XGMII

clock (156,25 MHz) to XGMII stream in 64bit mode (without DDR). It generates the

interframe gap of minimum 12 byte times, adds the Preamble and Start of Frame

Delimiter (SFD) and encodes the incoming AXI stream to the XGMII interface

(64bit data, 8bit control) using the control lines and special characters according

to the XGMII specification. Start of frame shall always be on Lane 0.

It is instantiated on the TX side of the PCS and on the RX side of the MAC.

PtpTsu 10Gigabit Extension 0.2 Page 22 of 38

XGMII RX Interface Adapter

The XGMII RX Interface Adapter converts a XGMII stream in 64bit mode (without

DDR) to a 64bit AXI stream running on the XGMII clock (156,25 MHz). It removes

the Preamble and Start of Frame Delimiter (SFD) and decodes the incoming XGMII

stream (64bit data, 8bit control) to the AXI stream interface using the control lines

and special characters according to the XGMII specification. Start of frame shall

always be on Lane 0 (or 4).

It is instantiated on the RX side of the PCS and on the TX side of the MAC.

2.2.1.3 Entity Declaration

Name Dir Type Size Description

Ports

XGMii RX Clk/Rst Input

XGMiiRxClk_ClkIn in std_logic 1 RX Clock

XGMiiRxRstN_RstIn in std_logic 1
Reset aligned with

RX Clock

XGMii TX Clk/Rst Input

XGMiiTxClk_ClkIn in std_logic 1 TX Clock

XGMiiTxRstN_RstIn in std_logic 1
Reset aligned with

TX Clock

XGMii RX Data Input

XGMiiRxCtl_EnaIn in std_logic 8 RX Data valid

XGMiiRxData_DatIn in std_logic_vector 64 RX Data

XGMii TX Data Output

XGMiiTxCtl_EnaOut out std_logic 1 TX Data valid

XGMiiTxData_DatOut out std_logic_vector 64 TX Data

Axi Input

AxisValid_ValIn in std_logic 1 AXI Stream frame

input AxisReady_ValOut out std_logic 1

AxisData_DatIn in std_logic_vector 64

AxisStrobe_ValIn in std_logic_vector 8

AxisKeep_ValIn in std_logic_vector 8

AxisLast_ValIn in std_logic 1

AxisUser_DatIn in std_logic_vector 3

Axi Output

AxisValid_ValOut out std_logic 1 AXI Stream frame

output AxisReady_ValIn in std_logic 1

AxisData_DatOut out std_logic_vector 64

AxisStrobe_ValOut out std_logic_vector 8

PtpTsu 10Gigabit Extension 0.2 Page 23 of 38

AxisKeep_ValOut out std_logic_vector 8

AxisLast_ValOut out std_logic 1

AxisUser_DatOut out std_logic_vector 3

Table 6: MAC XGMII Adapter

Name Dir Type Size Description

Ports

XGMii RX Clk/Rst Input

XGMiiRxClk_ClkIn in std_logic 1 RX Clock

XGMiiRxRstN_RstIn in std_logic 1
Reset aligned with

RX Clock

XGMii TX Clk/Rst Input

XGMiiTxClk_ClkIn in std_logic 1 TX Clock

XGMiiTxRstN_RstIn in std_logic 1
Reset aligned with

TX Clock

XGMii RX Data Output

XGMiiRxCtl_EnaOut out std_logic 8 RX Data valid

XGMiiRxData_DatOut out std_logic_vector 64 RX Data

XGMii TX Data Input

XGMiiTxCtl_EnaIn in std_logic 1 TX Data valid

XGMiiTxData_DatIn in std_logic_vector 64 TX Data

Axi Input

AxisValid_ValIn in std_logic 1 AXI Stream frame

input AxisReady_ValOut out std_logic 1

AxisData_DatIn in std_logic_vector 64

AxisStrobe_ValIn in std_logic_vector 8

AxisKeep_ValIn in std_logic_vector 8

AxisLast_ValIn in std_logic 1

AxisUser_DatIn in std_logic_vector 3

Axi Output

AxisValid_ValOut out std_logic 1 AXI Stream frame

output AxisReady_ValIn in std_logic 1

AxisData_DatOut out std_logic_vector 64

AxisStrobe_ValOut out std_logic_vector 8

AxisKeep_ValOut out std_logic_vector 8

AxisLast_ValOut out std_logic 1

AxisUser_DatOut out std_logic_vector 3

Table 7: PHY XGMII Adapter

PtpTsu 10Gigabit Extension 0.2 Page 24 of 38

2.2.2 Arbiter

2.2.2.1 Entity Block Diagram

AXIS [1..0]
64bit

ARBITER
Proc

MUX
Proc

Selected

Req [1..0]

AXIS
64bit

Ack [1..0]

Figure 5: Arbiter

2.2.2.2 Entity Description

The Arbiter was designed to have minimal delay and maximum throughput since it

needs to provide valid Data at every clock cycle once started and shall not slow

down the forwarding path.

In the design the Arbiter is controlled by two Forward FIFOs in Store-And-Forward

mode. As soon as the FIFO has valid data available it will assert the Req line and

will wait with providing data with the valid signal until the Ack is set. At the end of

the frame if there is still data available in the FIFO it will assert the Req line again.

This assures a zero delay switchover or when frames come back to back. The Ack

signal is changing with one clock cycle delay when access is granted.

To guarantee that no path starves it switches between the paths if both of them

have ready data to send, this also guarantees that the maximum delay one port has

to wait until it is served again is the maximum size of one frame (if both request

only when data is valid). If no path wanted to send and at the next moment both of

them want to send, path 1 has priority over path 2. Back-pressure is directly for-

warded to the path selected. The path not selected doesn’t get the Ack line set and

the AXI ready signal is low. If no path is selected (after the last frame was sent and

no path has data ready to send) the Ack signals are low and the AXI ready signal to

both input ports is low.

2.2.2.3 Entity Declaration

Name Dir Type Size Description

Ports

System

PtpTsu 10Gigabit Extension 0.2 Page 25 of 38

XGMiiClk_ClkIn in std_logic 1 XGMII Clock

XGMiiRstN_RstIn in std_logic 1 XGMII Reset

Arbiter Request Input

Req_ValIn in std_logic_vector 2 Request access

Arbiter Acknowledge Output

Ack_ValOut in std_logic_vector 2
Acknowledge ac-

cess

Axi Input

AxisValid_ValIn in
Axis64_Itf

Valid_Type
2

AXI Stream frame

input

AxisReady_ValOut out
Axis64_Itf

Ready_Type
2

AxisData_DatIn in
Axis64_Itf

Data_Type
2

AxisStrobe_ValIn in
Axis64_Itf

Strobe_Type
2

AxisKeep_ValIn in
Axis64_Itf

Keep_Type
2

AxisLast_ValIn in
Axis64_Itf

Last_Type
2

AxisUser_DatIn in
Axis64_Itf

User_Type
2

Axi Output

AxisValid_ValOut out std_logic 1 AXI Stream frame

output AxisReady_ValIn in std_logic 1

AxisData_DatOut out std_logic_vector 64

AxisStrobe_ValOut out std_logic_vector 8

AxisKeep_ValOut out std_logic_vector 8

AxisLast_ValOut out std_logic 1

AxisUser_DatOut out std_logic_vector 3

Table 8: Arbiter

PtpTsu 10Gigabit Extension 0.2 Page 26 of 38

2.2.3 PTP Filter and Splitter

2.2.3.1 Entity Block Diagram

AXIS
64bit

DropFwd
FILTER
Proc

DropPtp

AXIS
64bit

AXIS
64bit

AXIS
64bit

Figure 6: PTP Filter and Splitter

2.2.3.2 Entity Description

The Filter and Splitter has two functionalities: The first functionality is that it splits

the AXI stream into two AXI streams and makes sure that data transfers are done

when both output AXI streams are ready, even though the output AXI streams will

always signal valid because the Arbiter and Splitter is connected to two Forward-

ing FIFOs which signal ready always.

The second functionality is that it parses the incoming frame to check if it is a PTP

frame or not. The parser checks several things:

• Destination MAC for the dedicate PTP Multicast Mac Addresses

• Etherthertype dedicated to PTP if in Layer 2 mode

• Destination IP Addresses for the dedicated PTP Multicast IP Addresses and

UDP Destination Ports dedicated to PTP if in Layer 3 (UDP/IPv4 or IPv6)

mode

• VLAN if used, which shifts byte alignment by 4

• Redundancy Tags, which shifts byte alignment by 6

If it is a PTP frame it asserts the drop signal for the forwarding path. If it is not a

PTP frame it will assert the drop signal for the PTP receive path.

The drop signal shall be asserted for a single clock cycle whenever the frame type

is detected.

The parser must be able to run at full speed without the need for backpressure.

2.2.3.3 Entity Declaration

Name Dir Type Size Description

Generics

PtpTsu 10Gigabit Extension 0.2 Page 27 of 38

UnicastProfile

Support_Gen
- Boolean 1

If Unicast Frames

shall be handled

Ports

System
XGMiiClk_ClkIn in std_logic 1 XGMII Clock

XGMiiRstN_RstIn in std_logic 1 XGMII Reset

Arbiter Acknowledge Output

Drop_ValOut out std_logic_vector 2

Drop indication if it

is a PTP frame or

not. It will either be

forwarded to the

MAC or the PTP

core (either or)

Axi Input

AxisValid_ValIn in std_logic 1 AXI Stream frame

input AxisReady_ValOut out std_logic 1

AxisData_DatIn in std_logic_vector 64

AxisStrobe_ValIn in std_logic_vector 8

AxisKeep_ValIn in std_logic_vector 8

AxisLast_ValIn in std_logic 1

AxisUser_DatIn in std_logic_vector 3

Axi Output

AxisValid_ValOut out
Axis64_Itf

Valid_Type
2

AXI Stream frame

output

AxisReady_ValIn in
Axis64_Itf

Ready_Type
2

AxisData_DatOut out
Axis64_Itf

Data_Type
2

AxisStrobe_ValOut out
Axis64_Itf

Strobe_Type
2

AxisKeep_ValOut out
Axis64_Itf

Keep_Type
2

AxisLast_ValOut out
Axis64_Itf

Last_Type
2

AxisUser_DatOut out
Axis64_Itf

User_Type
2

Table 9: PTP Filter and Splitter

PtpTsu 10Gigabit Extension 0.2 Page 28 of 38

2.2.4 TX Conversion FIFO

2.2.4.1 Entity Block Diagram

AXIS
64bit

SYNC
FIFO

(large)

Req/Ack

XGMII Clk
AXIS
64bit

ASYNC
FIFO
(min)

TX
TS

GEN
Timestamp &

Correction

Sys Clk

AXIS
64bit

32to64
CONV

Stop

AXIS
32bit

ENDIAN
SWAP

AXIS
32bit

Message Length

& Req/AckReq/Ack

Figure 7: TX Conversion FIFO

2.2.4.2 Entity Description

The two Conversion FIFOs mainly differ on the Timestamp handling.

Both Conversion FIFOs handle the clock domain crossing between the XGMII clock

(RX or TX) and the System Clock with a Cut-Through Asynchronous FIFO, handle

the width conversion between a 32bit and 64bit AXI stream, handle the speed

difference between 10G and ~1G with a Store-And-Forward Synchronous FIFO as

well as the byte order on AXI stream. The PTP part expects the MSB in the highest

valid Byte of AXI stream, which is the inversed order compared to standard AXI

stream.

The purpose of the Synchronous FIFO in the TX Conversion FIFO has also two

purposes: first, it guarantees that a PTP frame can be sent fast enough on the path

towards the Interface Adapter since the Interface Adapter requires a continuous

stream once started, second it allows to have a determinist forwarding behavior

after the timestamp point.

The TX Timestamper waits until data is valid from the Asynchronous FIFO and

immediately stops the transfer. At this moment the PTP core already provided the

frame length of the frame that it started to send which is then stored and the

request line asserted towards the Arbiter and waited for the acknowledge.

As soon as the acknowledge from the Arbiter comes the transfer is released. It then

calculates the correction value of the timestamps based on the frame length and

asserts the timestamp event signal together with the correction value. It then waits

until the last byte is pushed to the Synchronous FIFO and then stops the transfer

again. It then waits until the frame starts towards the Interface adapter, releases

PtpTsu 10Gigabit Extension 0.2 Page 29 of 38

the request signal and waits until it is completed, then releases the transfer for the

next frame. This way, the delay from the point the acknowledge comes until the

frame is sent towards the Interface Adapter is determinist, based on the frame

length and some other delays on the PTP side. In addition, it has a generic for the

TX PHY delay which is added to the correction value.

This mechanism allows one-step and two-step timestamping

The PTP TSU needed the following modifications:

The timestamping part needs to use the correction values in its calculations.

The TX frame parser needs to provide a calculated frame length to the TX FIFO

and the alignment has to be that the frame length is valid when the first AXI trans-

fer is valid.

The frame and timestamp alignment have to be ensured to work with the Conver-

sion FIFOs

2.2.4.3 Entity Declaration

Name Dir Type Size Description

Generics

General

NoTimestamping_Gen - boolean 1

If no Timestamp

shall be generated

and only the con-

version

Depth_Gen - natural 1 Sync FIFO Size

Ready_Gen - boolean 1

If the FIFO shall be

able to make back

pressure

AdditionalDelay_Gen - natural 1 PHY TX Delay

ClockClkPeriodNano-

second_Gen
- natural 1

Integer Clock Period

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysRstN_RstIn in std_logic 1 System Reset

XGMii Clk/Rst Input

XGMiiClk_ClkIn in std_logic 1 XGMII Clock

XGMiiRstN_RstIn in std_logic 1 Reset aligned with

PtpTsu 10Gigabit Extension 0.2 Page 30 of 38

XGMII Clock

Arbiter Request Output

Req_ValOut out std_logic 1 Request access

Arbiter Acknowledge Input

Ack_ValIn in std_logic 1
Acknowledge ac-

cess

Timestamp Output
Timestamp
Event_EvtOut

out std_logic 1 Timestamp event

Timestamp
Correction_DatOut

out std_logic_vector 32
Correction value to

the Timestamp

Frame Length Input

FrameLength_DatIn in std_logic_vector 16
Frame Length of the

PTP frame on AXI

FrameLength_ValIn in std_logic 1 Frame Length valid

Axi Input

AxisValid_ValIn in std_logic 1 AXI Stream frame

input AxisReady_ValOut out std_logic 1

AxisData_DatIn in std_logic_vector 32

AxisStrobe_ValIn in std_logic_vector 4

AxisKeep_ValIn in std_logic_vector 4

AxisLast_ValIn in std_logic 1

AxisUser_DatIn in std_logic_vector 3

Axi Output

AxisValid_ValOut out std_logic 1 AXI Stream frame

output AxisReady_ValIn in std_logic 1

AxisData_DatOut out std_logic_vector 64

AxisStrobe_ValOut out std_logic_vector 8

AxisKeep_ValOut out std_logic_vector 8

AxisLast_ValOut out std_logic 1

AxisUser_DatOut out std_logic_vector 3

Table 10: TX Conversion FIFO

PtpTsu 10Gigabit Extension 0.2 Page 31 of 38

2.2.5 RX Conversion FIFO

2.2.5.1 Entity Block Diagram

AXIS
64bit

SYNC
FIFO

(large)Drop

XGMII Clk
AXIS
64bit

Drop

ASYNC
FIFO
(min)

RX
TS

GEN Timestamp &
Correction

Sys Clk

AXIS
64bit

64to32
CONV

Stop

AXIS
32bit

ENDIAN
SWAP

AXIS
32bit

Figure 8: RX Conversion FIFO

2.2.5.2 Entity Description

The two Conversion FIFOs mainly differ on the Timestamp handling.

Both Conversion FIFOs handle the clock domain crossing between the XGMII clock

(RX or TX) and the System Clock with a Cut-Through Asynchronous FIFO, handle

the width conversion between a 32bit and 64bit AXI stream, handle the speed

difference between 10G and ~1G with a Store-And-Forward Synchronous FIFO as

well as the byte order on AXI stream. The PTP part expects the MSB in the highest

valid Byte of AXI stream, which is the inversed order compared to standard AXI

stream.

The purpose of the Synchronous FIFO in the RX Conversion FIFO has two purpos-

es: it allows to drop Non-PTP frames and it does the speed conversion from 10G to

1G also allowing bursts of PTP Frames since the Interface Adapter can not be

slowed down.

The RX Timestamper has an internal counter (20bit) which is incremented by 1 for

each clock cycle (wrapping though zero=. When a start of a frame is detected on

the path from the Interface Adapter it stores the counter value and if the frame is

not dropped (due to overflow condition or if Non-PTP) this counter value is pushed

to a FIFO which can store as many counter snapshots as 64byte sized frame can

be in the Synchronous FIFO. Once a frame starts towards the PTP core, it takes

another snapshot of the counter and popes the counter value from the FIFO. It

then calculates the difference between the counter values and converts it then into

the timestamp correction value in nanoseconds and asserts it together with the

timestamp event signal. It then waits until the frame has been completely pushed

PtpTsu 10Gigabit Extension 0.2 Page 32 of 38

to the FIFO and stops the transfer for some time to allow the PTP core to do its

calculations even with back to back frames. In addition, it has a generic for the RX

PHY delay which is added to the correction value.

2.2.5.3 Entity Declaration

Name Dir Type Size Description

Generics

General

NoTimestamping_Gen - boolean 1

If no Timestamp

shall be generated

and only the con-

version

Depth_Gen - natural 1 Sync FIFO Size

Ready_Gen - boolean 1

If the FIFO shall be

able to make back

pressure

AdditionalDelay_Gen - natural 1 PHY TX Delay

ClockClkPeriodNano-

second_Gen
- natural 1

Integer Clock Period

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysRstN_RstIn in std_logic 1 System Reset

XGMii Clk/Rst Input

XGMiiClk_ClkIn in std_logic 1 XGMII Clock

XGMiiRstN_RstIn in std_logic 1
Reset aligned with

XGMII Clock

Drop Input

Drop_ValIn in std_logic 1
If frame will be

dropped

Timestamp Output
Timestamp
Event_EvtOut

out std_logic 1 Timestamp event

Timestamp
Correction_DatOut

out std_logic_vector 32
Correction value to

the Timestamp

Axi Input

AxisValid_ValIn in std_logic 1 AXI Stream frame

input AxisReady_ValOut out std_logic 1

PtpTsu 10Gigabit Extension 0.2 Page 33 of 38

AxisData_DatIn in std_logic_vector 64

AxisStrobe_ValIn in std_logic_vector 8

AxisKeep_ValIn in std_logic_vector 8

AxisLast_ValIn in std_logic 1

AxisUser_DatIn in std_logic_vector 3

Axi Output

AxisValid_ValOut out std_logic 1 AXI Stream frame

output AxisReady_ValIn in std_logic 1

AxisData_DatOut out std_logic_vector 32

AxisStrobe_ValOut out std_logic_vector 4

AxisKeep_ValOut out std_logic_vector 4

AxisLast_ValOut out std_logic 1

AxisUser_DatOut out std_logic_vector 3

Table 11: RX Conversion FIFO

PtpTsu 10Gigabit Extension 0.2 Page 34 of 38

2.2.6 Forwarding FIFO

2.2.6.1 Entity Block Diagram

SYNC
SIMPLE

DUAL PORT
RAM

AXIS
64bit

WriteFIFO
WRITE
Proc

AXIS
64bit

FIFO
READ
Proc

Read

Read AddrWrite Addr

Write Data Read Data

Req/Ack

Figure 9: Forwarding FIFO

2.2.6.2 Entity Description

The FIFO was designed to have minimal delay and maximum throughput since it

needs to provide valid Data at every clock cycle once started.

It consists of a Read and Write process which access a Synchronous Simple Dual

Port RAM (one read and one write port).

The RAM is 76bits wide: 64bit Data, 8bit Keep, 1bit Last, 3bit User

The FIFO could generate a ready signal on the input if it runs into a full condition,

however this is disabled via a generic since the source can not be slowed down

(Interface adapter). If the FIFO runs into an overflow condition it will drop the

whole frame currently coming in. This ensures that only valid frames are forwarded.

Droping on overflow is done for both Store-And-Forward and Cut-Through FIFO

types. This requires, that for the Cut-Through case the FIFO must be large enough

to store a maximum sized frame. The Store-And-Forward FIFO has an additional

Drop input which allows to drop an incoming frame. The Drop signal can be set

until the Last signal is asserted. After this the frame is stored and can not be

dropped. The AXI stream is synchronous to the corresponding XGMII clock per

direction (RX/TX). There is no clock domain crossing in the FIFO. Optionally it has

a Request and Acknowledge signal for Arbitration. The Request signal will be

asserted after the last frame has completed and new data is ready to be sent. As

long as the Request signal is asserted but no Acknowledge is done, no AXI transfer

will happen.

2.2.6.3 Entity Declaration

Name Dir Type Size Description

Ports

PtpTsu 10Gigabit Extension 0.2 Page 35 of 38

XGMii Clk/Rst Input

XGMiiClk_ClkIn in std_logic 1 XGMII Clock

XGMiiRstN_RstIn in std_logic 1
Reset aligned with

XGMII Clock

Arbiter Request Output

Req_ValOut out std_logic 1 Request access

Arbiter Acknowledge Input

Ack_ValIn in std_logic 1
Acknowledge ac-

cess

Drop Input

Drop_ValIn in std_logic 8

Asserted when an

incoming frame

shall be dropped

Drop Output

Drop_ValOut out std_logic 1

Asserted when an

incoming frame is

dropped

Axi Input

AxisValid_ValIn in std_logic 1 AXI Stream frame

input AxisReady_ValOut out std_logic 1

AxisData_DatIn in std_logic_vector 64

AxisStrobe_ValIn in std_logic_vector 8

AxisKeep_ValIn in std_logic_vector 8

AxisLast_ValIn in std_logic 1

AxisUser_DatIn in std_logic_vector 3

Axi Output

AxisValid_ValOut out std_logic 1 AXI Stream frame

output AxisReady_ValIn in std_logic 1

AxisData_DatOut out std_logic_vector 64

AxisStrobe_ValOut out std_logic_vector 8

AxisKeep_ValOut out std_logic_vector 8

AxisLast_ValOut out std_logic 1

AxisUser_DatOut out std_logic_vector 3

Table 12: Forwarding FIFO

PtpTsu 10Gigabit Extension 0.2 Page 36 of 38

2.3 Clocking and Reset Concept

2.3.1 Clocking

To keep the design as robust and simple as possible, the whole Ordinary Clock,

including the Counter Clock and all other cores from NetTimeLogic are run in one

clock domain. This is considered to be the system clock. Per Default this clock is

50MHz. Where possible also the interfaces are run synchronous to this clock. For

clock domain crossing asynchronous Fifos with gray counters or message patterns

with meta-stability flip-flops are used. Clock domain crossings for the AXI interface

is moved from the AXI slave to the AXI interconnect.

Clock Frequency Description

System

System Clock
50MHz

(Default)

System clock where the TSU runs on as

well as the counter clock etc.

XGMII Interface
XGMII RX Clock 156.25MHz Asynchronous, external receive clock

XGMII TX Clock 156.25MHz Asynchronous, external transmit clock

AXI Interface

AXI Clock
50MHz

(Default)

Internal AXI bus clock, same as the

system clock

Table 13: Clocks

XGMII
 TX ITF

ADAPTER
ARBITER

RX
 CONV
FIFO

XGMII
RX ITF

ADAPTER

PTP FILTER
&

SPLITTER

TX
CONV
FIFO

AXIS
64bit

AXIS
64bit

AXIS
64bit

AXIS
64bit

XGMII
 TX ITF

ADAPTER

XGMII
RX ITF

ADAPTER

FORWARD
FIFO

FORWARD
FIFO

AXIS
64bit

AXIS
64bit

AXIS
64bit

AXIS
64bit

PTP
TSU
AXI

AXIS
32bit

AXIS
32bit

XGMII
TX

XGMII
RX

XGMII
TX

XGMII
RX

RX TS Event &
Adjustment

TX TS Event &
 Adjustment

RX Clk RX Clk

TX ClkTX Clk

AXI MM

Drop

Drop

Req &
Grant Ptp

Req &
Grant Tx

Time &
Timer

Drop Rx

+

Drop

+
Drop
Ptp

Drop

Drop

ARBITER
TX

CONV
FIFO

RX
 CONV
FIFO

PTP FILTER
&

SPLITTER

Req &
Grant Tx

Drop
+

Drop
Ptp

Drop Tx

+

Drop

Drop

AXIS
64bit

AXIS
64bit

Req &
Grant Ptp

AXIS
64bit

AXIS
32bit

AXIS
32bit

AXIS
64bit

TX TS Event &
 Adjustment

TX Info

156.25MHz XGMII TX Clk

156.25MHz XGMII RX Clk

E.g. 50MHz System Clk

10G
XGMII
PHY

10G
XGMII
MAC

Figure 10: Clocking Concept

PtpTsu 10Gigabit Extension 0.2 Page 37 of 38

2.3.2 Reset

In connection with the clocks, there is a reset signal for each clock domain. All

resets are active low. All resets can be asynchronously set and shall be synchro-

nously released with the corresponding clock domain. All resets shall be asserted

for the first couple (around 8) clock cycles. All resets shall be set simultaneously

and released simultaneously to avoid overflow conditions in the core. See the

reference designs top file for an example of how the reset shall be handled.

Reset Polarity Description

System

System Reset Active low
Asynchronous set, synchronous release

with the system clock

XGMII Interface

XGMII RX Reset Active low
Asynchronous set, synchronous release

with the (R)(G)MII RX clock

XGMII TX Reset Active low
Asynchronous set, synchronous release

with the (R)(G)MII TX clock

AXI Interface

AXI Reset Active low

Asynchronous set, synchronous release

with the AXI clock, which is the same as

the system clock

Table 14: Resets

PtpTsu 10Gigabit Extension 0.2 Page 38 of 38

A List of tables

Table 1: Revision History ..4

Table 2: Definitions .. 6

Table 3: Abbreviations .. 7

Table 4: Parameters .. 13

Table 5: PTP Timestamp Unit XGMII ... 20

Table 6: MAC XGMII Adapter .. 23

Table 7: PHY XGMII Adapter ... 23

Table 8: Arbiter .. 25

Table 9: PTP Filter and Splitter .. 27

Table 10: TX Conversion FIFO .. 30

Table 11: RX Conversion FIFO .. 33

Table 12: Forwarding FIFO ... 35

Table 13: Clocks ... 36

Table 14: Resets ... 37

B List of figures

Figure 1: Context Block Diagram .. 9

Figure 2: Architecture Block Diagram ... 10

Figure 3: PTP Timestamp Unit 10G ... 13

Figure 4: XGMII Interface Adapter .. 21

Figure 5: Arbiter .. 24

Figure 6: PTP Filter and Splitter .. 26

Figure 7: TX Conversion FIFO .. 28

Figure 8: RX Conversion FIFO ... 31

Figure 9: Forwarding FIFO ... 34

Figure 10: Clocking Concept .. 36

	1 Introduction
	1.1 Context Overview
	1.2 Function
	1.3 Architecture

	2 Design Description
	2.1 Top Level – PTP Ordinary Clock
	2.1.1.1 Parameters
	2.1.1.2 Entity Block Diagram
	2.1.1.3 Entity Description
	2.1.1.4 Entity Declaration

	2.2 Design Parts
	2.2.1 XGMII Interface Adapter
	2.2.1.1 Entity Block Diagram
	2.2.1.2 Entity Description
	2.2.1.3 Entity Declaration

	2.2.2 Arbiter
	2.2.2.1 Entity Block Diagram
	2.2.2.2 Entity Description
	2.2.2.3 Entity Declaration

	2.2.3 PTP Filter and Splitter
	2.2.3.1 Entity Block Diagram
	2.2.3.2 Entity Description
	2.2.3.3 Entity Declaration

	2.2.4 TX Conversion FIFO
	2.2.4.1 Entity Block Diagram
	2.2.4.2 Entity Description
	2.2.4.3 Entity Declaration

	2.2.5 RX Conversion FIFO
	2.2.5.1 Entity Block Diagram
	2.2.5.2 Entity Description
	2.2.5.3 Entity Declaration

	2.2.6 Forwarding FIFO
	2.2.6.1 Entity Block Diagram
	2.2.6.2 Entity Description
	2.2.6.3 Entity Declaration

	2.3 Clocking and Reset Concept
	2.3.1 Clocking
	2.3.2 Reset

