

Whitepaper 1.0 Page 1 of 9

Performant Rust Webserver on a

Low-Cost FPGA

4. April 2025

To enhance user experience with our new AIONYX Hive product line, we've created

a web-based configuration tool to configure the device. This requires a web server

to run somewhere, preferably on (or beside) the FPGA. While our Hive-M, with its

integrated quad-core CPU, easily accommodates this, the Hive-S presents a chal-

lenge. Built solely on an Artix™ 7 FPGA, the Hive-S lacks a dedicated CPU. To ena-

ble our web server on the Hive-S, we must implement a complete system, including

a Linux-capable CPU (ideally with an MMU), a supporting System-on-Chip (SoC) in-

frastructure and the necessary software development toolchains for Linux and

Rust, as our web server is built with Rust.

RISC-V Soft-Core CPU

To run a CPU on the Artix™ 7 FPGA, we first evaluated the MicroBlaze™ soft pro-

cessor (RISC Harvard architecture). However, its limited ecosystem led us to LiteX.

LiteX is a framework for building efficient RISC-V based SoCs. A functional Linux-

capable SoC, including a configurable RISC-V 32-bit SMP CPU, is already provided

here by the LiteX project.

https://github.com/enjoy-digital/litex
https://github.com/litex-hub/linux-on-litex-vexriscv

Whitepaper 1.0 Page 2 of 9

Additionally, LiteX leverages Buildroot to easily create a Linux distribution for em-

bedded environments. To accommodate our in-house IP cores and SoC modifica-

tions, we adapted the pre-existing generation process to import external RTL.

We utilize the GNU RISC-V toolchain for compiling Linux and applications that run

on top (e.g., our web server).

Rust

While we now have a Linux system capable of running applications, deploying our

Rust-based web server requires further steps.

Our web server is built with Rust because it is a compiled language that is inher-

ently memory safe. Our first draft of the web server was written in Python, but

since the performance on the Hive-S was poor, we have decided to switch to Rust.

To build the application for the Hive-S we need a Rust toolchain tailored to our tar-

get platform, namely riscv32imac-unknown-linux-gnu. Unfortunately, this target is

not yet officially supported by Rust. Therefore, we must build a custom toolchain.

Our objective is to execute cargo within our project's root directory and generate a

binary executable on the target system.

For those interested in the process of adding a custom target, the following details

the build procedure. Alternatively, a pre-built Rust toolchain is available here.

The following steps have been tested on an x86-64 Ubuntu 24.04 system, but may

also work on other Debian based distros and architectures. To start off, you likely

need to install some dependencies:

sudo apt-get update

sudo apt-get install build-essential pkgconf git curl cmake ninja-

build libssl-dev

To begin building our custom Rust toolchain, we first clone the official Rust reposi-

tory and checkout the latest stable release (version 1.86.0 in our case):

git clone --recursive https://github.com/rust-lang/rust.git --branch

1.86.0 --depth 1

cd rust

https://buildroot.org/
https://github.com/riscv-collab/riscv-gnu-toolchain
https://doc.rust-lang.org/rustc/platform-support.html
https://github.com/kevin-schaerer/rust/releases/tag/1.86.0-ntl

Whitepaper 1.0 Page 3 of 9

Next, we define our custom target. This involves creating a new target specification

within the Rust compiler's source code. Specifically, we add a file with the following

content to the targets directory:

compiler/rustc_target/src/spec/targets/riscv32imac_unknown_linux_gnu.rs

use std::borrow::Cow;

use crate::spec::{CodeModel, SplitDebuginfo, Target, TargetOptions,

base};

pub(crate) fn target() -> Target {

 Target {

 data_layout: "e-m:e-p:32:32-i64:64-n32-S128".into(),

 llvm_target: "riscv32-unknown-linux-gnu".into(),

 metadata: crate::spec::TargetMetadata {

 description: Some("RISC-V Linux GNU (RV32IMAC

ISA)".into()),

 tier: Some(3),

 host_tools: Some(false),

 std: Some(false),

 },

 pointer_width: 32,

 arch: "riscv32".into(),

 options: TargetOptions {

 code_model: Some(CodeModel::Medium),

 cpu: "generic-rv32".into(),

 max_atomic_width: Some(32),

 features: "+m,+a,+c".into(),

 llvm_abiname: "ilp32".into(),

 supported_split_debuginfo: Cow::Borrowed(&[SplitDe-

buginfo::Off]),

 ..base::linux_gnu::opts()

 },

 }

}

Whitepaper 1.0 Page 4 of 9

Additionally, the new target specification must be registered in compiler/rustc_tar-

get/src/spec/mod.rs:

supported_targets! {

 ...

 ("riscv32imac-unknown-linux-gnu", riscv32imac_un-

known_linux_gnu),

 ...

}

Finally, the custom target must be added to the sanity check configuration in

src/bootstrap/src/core/sanity.rs:

const STAGE0_MISSING_TARGETS: &[&str] = &[

 ...

 "riscv32imac-unknown-linux-gnu",

 ...

];

This step is necessary because the Rust toolchain is built incrementally, leveraging

the latest stable official compiler. As our custom target is not recognized by the

upstream compiler, we must explicitly include it here to prevent build errors.

With these modifications, we can now proceed to build the Rust toolchain with

support for our custom target.

Important: Ensure you have a compatible GCC toolchain installed, as it is a prereq-

uisite for the following build process. As mentioned before, we are using the GNU

RISC-V toolchain. If you use x68-64 Ubuntu 24.04 as your host system, you can

find a precompiled RISC-V toolchain including GCC 14.2.0 here.

First, define additional compiler flags for the toolchain:

export CFLAGS_riscv32imac_unknown_linux_gnu="-march=rv32imac -

mabi=ilp32"

https://github.com/kevin-schaerer/riscv-gnu-toolchain/releases/tag/2025.01.20

Whitepaper 1.0 Page 5 of 9

This variable defines the architecture (rv32imac) and application-binary interface

(ABI; ilp32) used when building Rust, which both should also be supported by the

GNU toolchain that you are using.

Next, we configure the build process and specify the components to build by cre-

ating a config.toml file in the repository's root directory with this content:

profile = "dist"

change-id = 134650

[build]

target = ["riscv32imac-unknown-linux-gnu"]

[rust]

channel = "stable"

description = "Rust for NTL Hive-S SoC"

[target.riscv32imac-unknown-linux-gnu]

cc = "riscv32-unknown-linux-gnu-gcc"

ar = "riscv32-unknown-linux-gnu-ar"

The profile dist declares that we want to export and distribute the toolchain and

under [build], we define which additional targets we intend to build Rust for.

We can build the toolchain by simply invoking the following in the root directory of

the Rust repository:

./x build -i --stage 1 compiler/rustc library/std

The build process will take some time. Eventually, when the build has succeeded,

we can export the toolchain by invoking:

./x dist -i --stage 1

After this step, you should find multiple *.tar.gz files in the build/dist/ directory rel-

ative to the root of the repository:

• rust-1.86.0-x86_64-unknown-linux-gnu.tar.xz is the host toolchain

Whitepaper 1.0 Page 6 of 9

• rust-std-1.86.0-riscv32imac-unknown-linux-gnu.tar.xz is the target toolchain

with std support built-in

•

There are various ways to install the toolchain. For simplicity, we assume you are

using rustup to manage your Rust toolchains. This process will then allow you to

use the custom toolchain by invoking the known commands but adding +custom

to it.

Note: We assume that .cargo and .rustup are in the $HOME directory.

Go to the directory you specified above. First, we need to unpack the two .tar.gz

files:

tar -xvf rust-1.86.0-x86_64-unknown-linux-gnu.tar.xz

tar -xvf rust-std-1.86.0-riscv32imac-unknown-linux-gnu.tar.xz

Next, we can install it:

./rust-1.86.0-x86_64-unknown-linux-gnu/install.sh --pre-

fix=$HOME/.rustup/toolchains/custom

./rust-std-1.86.0-riscv32imac-unknown-linux-gnu/install.sh --pre-

fix=$HOME/.rustup/toolchains/custom

Now you should be able to invoke the custom toolchain. Let’s try it out by checking

the version:

cargo +custom --version

cargo 1.86.0 (adf9b6ad1 2025-02-28)

Let’s see if our custom target is supported:

rustc +custom --print target-list | grep "riscv32imac-unknown-linux-

gnu"

riscv32imac-unknown-linux-gnu

Perfect. Now we can start building applications for the Hive-S!

Whitepaper 1.0 Page 7 of 9

Demo and Performance

The following video provides an insight of how our web server performs on the

Hive-S.

The video shows the performance of the Hive-S when accessing and browsing our UniversalWebManger

The setup for testing the implementation on a Digilent ARTY A7 100T

https://www.youtube.com/watch?v=yIKGeRf9evQ

Whitepaper 1.0 Page 8 of 9

Conclusion

Finally, we have everything together to run our web server on the Hive-S in an

Artix™ 7 FPGA. Even though the CPU is running at only 125 MHz, the web server is

very responsive and capable of processing some more demanding requests. In the

end, we can say that this is a fitting solution for our platform and the simplest in

the end-run.

In the future, we may change our SoC to use the new MicroBlaze™ V soft processor

which is based on the RISC-V architecture as well, but makes it even easier to inte-

grate with the tools we use. Stay tuned for more information around our AIONYX

ecosystem.

Whitepaper 1.0 Page 9 of 9

Link Summary

• Precompiled Rust toolchain with support for RISC-V 32-bit (rv32imac):

https://github.com/NetTimeLogic-OpenSource/rust/releases/tag/1.86.0-ntl

• Precompiled GNU RISC-V toolchain (x86-64 Ubuntu 24.04 only):

https://github.com/NetTimeLogic-OpenSource/riscv-gnu-toolchain/re-

leases/tag/2025.01.2

• Rust: https://www.rust-lang.org/

• Rust source code: https://github.com/rust-lang/rust

• GNU RISC-V toolchain source code: https://github.com/riscv-collab/riscv-

gnu-toolchain

• LiteX: https://github.com/enjoy-digital/litex

• LiteX SoC with RISC-V CPU: https://github.com/litex-hub/linux-on-litex-

vexriscv

• Buildroot: https://buildroot.org/

https://github.com/NetTimeLogic-OpenSource/rust/releases/tag/1.86.0-ntl
https://github.com/NetTimeLogic-OpenSource/riscv-gnu-toolchain/releases/tag/2025.01.2
https://github.com/NetTimeLogic-OpenSource/riscv-gnu-toolchain/releases/tag/2025.01.2
https://www.rust-lang.org/
https://github.com/rust-lang/rust
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/enjoy-digital/litex
https://github.com/litex-hub/linux-on-litex-vexriscv
https://github.com/litex-hub/linux-on-litex-vexriscv
https://buildroot.org/

