

Whitepaper 1.0 Page 1 of 16

OPC UA PubSub on a FPGA using

open62541

2. Oktober 2019

In a first step a simple OPC UA server was set up on a FPGA (see our previous blog

post: OPC UA Server on a FPGA using open62541). As a starting point it would be

good to begin with this example since the PubSub description builds up on the

basic OPC UA server.

Compared to the Client/Server mechanism, the Publish/Subscribe model is even

more interesting in the context of Time Sensitive Networking (TSN). PubSub is de-

fined in Part 14 of the OPC Unified Architecture specification and it allows one-to-

many or many-to-many connections. In combination with a TSN sub-layer it can

fulfill the real-time requirements for the industry.

https://nettimelogic.tumblr.com/post/187371127220/opc-ua-server-on-a-fpga-using-open62541

Whitepaper 1.0 Page 2 of 16

Together with NetTimeLogic’s TSN products or the TSN IIC® Plugfest Application

(Talker/Listener) an open62541 PubSub application in a MicroBlaze Softcore can be

easily combined. For the future we are targeting to realize the TSN Testbed In-

teroperability Application with the open62541 OPC UA stack and using NetTime-

Logic’s TSN End Node IP core as realtime sub-layer.

The example FPGA project and the application are available here:

https://github.com/NetTimeLogic/opcua/tree/PubSub_example

The open62541 implementation is available here (v1.0rc5):

https://github.com/open62541/open62541/tree/v1.0-rc5

Introduction

Compared to the Client/Server example no changes in the MicroBlaze FPGA de-

sign are needed. However, some adjustments in the CMake and BSP for lwip are re-

quired.

The following implementation is based on the open62541 documentation which de-

scribes how to build the library and how to work with Publish/Subscribe. The appli-

cation creates an OPC UA server thread which is publishing a Dataset. It runs with

FreeRTOS and lwip. The FPGA use a MicroBlaze softcore with DDR3, Axi Ethernet

Lite, Axi Uart Lite AXI GPIO and AXI Timer. As hardware the same Arty A7-100T

development board from DIGILENT as before is used.

https://www.nettimelogic.com/tsn-products.php
https://www.nettimelogic.com/tsn-iic-plugfest-app.php
https://www.nettimelogic.com/tsn-iic-plugfest-app.php
https://www.nettimelogic.com/tsn-end-node.php
https://www.nettimelogic.com/tsn-end-node.php
https://github.com/NetTimeLogic/opcua/tree/PubSub_example
https://github.com/open62541/open62541/tree/v1.0-rc5
https://open62541.org/doc/current/toc.html
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/

Whitepaper 1.0 Page 3 of 16

Required tools

To build the full project, the following tools are required:

To build the full project following tools are required:

• Xilinx Vivado 2019.1

• Xilinx SDK 2019.1

• CMAKE (Python 2.7.x or 3.x)

• UA Expert

• Wireshark

BSP adjustments for LWIP

For the simple OPC UA server some adjustments were needed in the lwip BSP of

Xilinx SDK.

See Line 10-19: https://github.com/open62541/open62541/blob/master/arch/com-

mon/ua_lwip.h

The Pub/Sub functionality need some more adjustments of the BSP. It should be

enough to enable the LWIP_IGMP. Nevertheless, it was not possible to generate

successfully the BSP again with this option enabled. As a workaround the addi-

tional needed defines are added to the already created (in the previous post)

open62541 section in the lwip211.tcl (bold) file. This allows to use the standard com-

pilation flow afterwards .

1. Go to:

https://cmake.org/
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.wireshark.org/download.html
https://github.com/open62541/open62541/blob/master/arch/common/ua_lwip.h
https://github.com/open62541/open62541/blob/master/arch/common/ua_lwip.h
https://nettimelogic.tumblr.com/post/187371127220/opc-ua-server-on-a-fpga-using-open62541

Whitepaper 1.0 Page 4 of 16

C:\Xilinx\SDK\2019.1\data\embeddedsw\ThirdParty\sw_ser-

vices\lwip211_v1_0\data

2. Open the lwip211.tcl

3. Search the proc generate_lwip_opts {libhandle} and go to the end of this pro-

cedure

4. Before the line puts $lwipopts_fd “\#endif” add the following code:

#OPEN62541 implementation

set open62541_impl [expr [common::get_property CON-

FIG.open62541_impl $libhandle] == true]

if {$open62541_impl} {

 puts $lwipopts_fd “\#define LWIP_COMPAT_SOCKETS 0”

 puts $lwipopts_fd “\#define LWIP_SOCKET 1”

 puts $lwipopts_fd “\#define LWIP_DNS 1”

 puts $lwipopts_fd “\#define SO_REUSE 1”

 puts $lwipopts_fd “\#define LWIP_TIMEVAL_PRIVATE 0”

 puts $lwipopts_fd “\#define LWIP_IGMP 1”

 puts $lwipopts_fd “\#define LWIP_MULTICAST_TX_OPTIONS 1”

 puts $lwipopts_fd “”

}

5. Save the file

After this change and a restart of Xilinx SDK the new option will be visible in the

BSP settings GUI of the lwip stack.

Design preparation

For the detailed design preparation steps please check the previous post OPC UA

Server on a FPGA using open62541.

Custom information models

In the basic OPC UA server example the default value “reduced” is used as

UA_NAMESPACE_ZERO option. For the UA_ENABLE_PUBSUB option it will com-

pile an additional nodeset and datatype file into the name space zero generated

file. Depending on what information will be published this might be not enough.

To be on the safe side UA_NAMESPACE_ZERO = “FULL” would be the easiest so-

lution. Since the MicroBlaze CPU is not a very powerful, it is not recommended to

use the full namespace. This example would take up to 30 minutes, until the server

https://nettimelogic.tumblr.com/post/187371127220/opc-ua-server-on-a-fpga-using-open62541
https://nettimelogic.tumblr.com/post/187371127220/opc-ua-server-on-a-fpga-using-open62541

Whitepaper 1.0 Page 5 of 16

is up and running! It is highly recommended to use an optimized/customized

nodeset for such an application.

https://opcua.rocks/custom-information-models/

XML Nodeset Compiler

Most probably in a final application all the variables/objects etc. are not defined

manually in the code. There are different tools (commercial but also open source)

available to create this information in a GUI. Out from these tools an XML with the

OPC UA Nodeset schema can be exported.

Open62541 provides a compiler which creates C code from the XML Nodeset. This

code creates then all the object instances as defined.

The complete documentation can be found here:

https://open62541.org/doc/1.0/nodeset_compiler.html

The compiler result for iicNs.c/h are available in git.

Nodeset in this example

Since this example is targeting for the IIC TSN Testbed application, the Nodeset

from there is used. It has the following structure with different types of variables:

For this Information Model the minimal Nodeset with PubSub is not sufficient,

therefore a customized one was created. This can be done as described above, or

even simpler, just by using the already precompiled open62541.c/h files

https://opcua.rocks/custom-information-models/
https://open62541.org/doc/1.0/nodeset_compiler.html
https://github.com/NetTimeLogic/opcua/tree/PubSub_example/Src/Sdk_workspace/OpcServer/src
https://github.com/NetTimeLogic/opcua/tree/PubSub_example/Src/open62541_pregenearated

Whitepaper 1.0 Page 6 of 16

CMAKE

For this example, the open62541 tag v1.0rc5 was used:

https://github.com/open62541/open62541/tree/v1.0-rc5

The easiest way is to work with the CMake GUI. Later it can be used in Xilinx SDK.

If the CMake library build is already available only two adjustments are needed:

UA_ENABLE_PUBSUB = ON

UA_ENABLE_PUBSUB_INFORMATIONMODEL = ON

If a new build is created, CMake for open62541 is used with the following adjust-

ment:

UA_ENABLE_AMALGAMATION = ON

UA_ENABLE_HARDENING = OFF

UA_ENABLE_PUBSUB = ON

UA_ENABLE_PUBSUB_INFORMATIONMODEL = ON

UA_ARCH_EXTRA_INCLUDES = <path to microblaze/include>

UA_ARCH_REMOVE_FLAGS = -Wpedantic -Wno-static-in-inline -Wre-

dundant-decls

CMAKE_C_FLAGS = -Wno-error=format= -mlittle-endian -Dcon-

figUSE_PORT_OPTIMISED_TASK_SELECTION=0 -DconfigAPPLICATION_AL-

LOCATED_HEAP=3 -DUA_ARCHITECTURE_FREERTOSLWIP

UA_LOGLEVEL = 100 (optional for debugging)

1. Start the CMake GUI

2. Select the correct source code path where the open62541 GIT repository is lo-

cated and the path where the binaries were built last time:

https://github.com/open62541/open62541/tree/v1.0-rc5

Whitepaper 1.0 Page 7 of 16

3. Click Configure

4. Change the two parameters:

UA_ENABLE_PUBSUB = ON

UA_ENABLE_PUBSUB_INFORMATIONMODEL = ON

5. Click again on Configure and after that on Generate

6. Generate again the open62541.c/h file in Xilinx SDK.

Make Target->all

Whitepaper 1.0 Page 8 of 16

7. The amalgamation files open62541.c/h should have now the PubSub feature in-

cluded

A pre-generated version of the open62541.c/h files is available on git.

Creating the OPC UA server application

The complete SDK workspace is available on git.

C/C++ Build Settings

For the build there are no new adjustments required. Please take the same build

settings as in the previous post for the simple OPC UA Server.

Linker script

The linker script setting for the memory must be increased, In the example we use

now:

• Heap Size: 20MB

• Stack Size: 20MB

OPC UA Server PubSub application

In the Xilinx SDK, the available OpcServer.c can be imported to the OpcServer ap-

plication project.

https://github.com/NetTimeLogic/opcua/tree/PubSub_example/Src/open62541_pregenearated
https://github.com/NetTimeLogic/opcua/tree/master/Src/Sdk_workspace
https://github.com/NetTimeLogic/opcua/blob/PubSub_example/Src/Sdk_workspace/OpcServer/src/OpcServer.c

Whitepaper 1.0 Page 9 of 16

In the basic server the thread stack size was defined with 4096. This is not enough

anymore and the application will report with the hook functions a StackOverFlow.

Therefore, the THREAD_STACKSIZE was increased to 16384.

In a first step the network initialization and the basic OPC UA Server configuration

is done. Before the server starts, the PubSub specific setup is needed. The applica-

tion is targeting to be compatible with the Pub/Sub format for the IIC TSN Testbed

interoperability application

Define the PubSub connection

In the PubSub connection mainly the transport profile and the multicast network

are defined. For this case we used following settings:

transportProfile: http://opcfoundation.org/UA-Profile/Transport/pubsub-udp-uadp

Network Address URL: opc.udp://224.0.0.22:4840

Add a Publishing dataset

This is the collection of the published fields. All PubSub items are linked to this one.

As PublishedDataSetType the following configuration is used:

publishedDataSetType: UA_PUBSUB_DATASET_PUBLISHEDITEMS

Add fields (variables) to the dataset

Here the variables are added by their NodeIds to the Published data set. Depend-

ing on the configuration the order of adding the variables has an impact how the

published data will look like.

Additionally, a value is set. It is important that the variables have a value (not

NULL). If a variable is empty there is just no content for the DataMessage to pub-

lish in the PubSub frame.

Add the writer group

The writer group is the important part when it comes to how the message looks

like. The whole configuration for the NetworkMessage Header (Extended) is done

here (OPC UA Part 14 Chapter 7.2.2.2).

Open62541 allows the specific configuration with the networkMessageContentMask

configuration.

For the IIC TSN Testbed interoperability application following settings will be used:

writerGroupMessage->networkMessageContentMask = (UA_UADPNETWORKMES-

SAGECONTENTMASK_PUBLISHERID

| UA_UA

DPNETWORKMESSAGECONTENTMASK_GROUPHEADER

Whitepaper 1.0 Page 10 of 16

| UA_UAD

PNETWORKMESSAGECONTENTMASK_WRITERGROUPID

| UA_UA

DPNETWORKMESSAGECONTENTMASK_GROUPVERSION

| UA_UADP

NETWORKMESSAGECONTENTMASK_NETWORKMESSAGENUMBER

| UA_UA

DPNETWORKMESSAGECONTENTMASK_SEQUENCENUMBER

| UA_UA

DPNETWORKMESSAGECONTENTMASK_PAYLOADHEADER

| UA_UAD

PNETWORKMESSAGECONTENTMASK_TIMESTAMP);

Beside the NetworkMessage Header also settings like the publishing interval or the

encoding MimeType are done here.

Add the dataset writer

This part is the second important part and defines how the DataSetMessage

Header looks like (OPC UA Part 14 Chapter 7.2.2.3.4).

With the dataSetMessageContentMask and the dataSetFieldContentMask this can

be configured.

For the IIC TSN Testbed interoperability application all this additional information is

disabled:

dataSetWriterMessage->dataSetMessageContentMask = UA_UADPDATASETMES-

SAGECONTENTMASK_NONE;

dataSetWriterConfig.dataSetFieldContentMask = UA_DATASETFIELDCON-

TENTMASK_NONE;

Start the Server

After all the setup for the variables and the PubSub data set has been done the

server is ready to start.

Starting the server takes quite some time with this example. After about two

minutes the OPC UA Server starts publishing.

Listen to the OPC UA publisher

If there is no Subscriber available there are other options to understand a bit how

the variables are published. Either the UaExpert can give some information or via

Wireshark the real PubSub Frame can be analyzed.

Whitepaper 1.0 Page 11 of 16

Before a connection to the OPC UA server is possible the application needs to be

compiled and started on the FPGA. After a successful start you should see the fol-

lowing printout on in the Terminal:

UA Expert

UA Expert is also a helpful tool to check some stuff about PubSub. With the option

UA_ENABLE_PUBSUB_INFORMATIONMODEL the published dataset information is

available.

All the configured nodes from the previous steps are now visible (UADP Connec-

tion, PublishedDataSets, DataSetWriter etc.) as a structure directly from the server.

In the Attribute of the object PublishedData all the published variables are visible.

Whitepaper 1.0 Page 12 of 16

Whitepaper 1.0 Page 13 of 16

Whitepaper 1.0 Page 14 of 16

Wireshark

To check if the content of the published frame manually, Wireshark is the simplest

way. This sample application uses a publishing interval of 5000 ms, so every 5s a

published frame is received in Wireshark.

Looking into the encoding of the frame above the following information is pub-

lished:

Whitepaper 1.0 Page 15 of 16

Summary

The used version of open62541 (v1.0rc5) allows working with Pub/Sub and allows

to do most of the configurations for the header information. However, there were

some adaptations required to use it for the IIC TSN Testbed interoperability appli-

cation.

In our test we saw some problems with some header information.

GroupHeader:

• GroupVersion was assigned

• SequenceNumber was not assigned

Extended NetworkMessageHeader:

• Timestamp was empty

As a workaround we have made some adaptations in the file src/pubsub/ua_pub-

sub.c by adding some assignments after the following code line:

nm.groupHeader.writerGroupId = wg->config.writerGroupId;

add:

nm.groupHeader.groupVersion = wgm->groupVersion;

nm.groupHeader.sequenceNumber = sequenceNumber;

nm.timestamp = UA_DateTime_now();

Whitepaper 1.0 Page 16 of 16

With these adjustments it was possible to create the frame as shown in the

Wireshark capture.

In a next step we will try to be fully compatible with the IIC TSN Testbed interoper-

ability application and combine it with our TSN core for real time publishing.

