/ Net Logic

MicroBlaze AXI
openoc2541 AXIUart
AXI
— | Ethemet
BRAM AXI
GPIO
MIGT
(DDR3)

OPC UA PubSub on a FPGA using
open62541

2. Oktober 2019

In a first step a simple OPC UA server was set up on a FPGA (see our previous blog
post: OPC UA Server on a FPGA using opent2541). As a starting point it would be
good to begin with this example since the PubSub description builds up on the
basic OPC UA server.

Compared to the Client/Server mechanism, the Publish/Subscribe model is even
more interesting in the context of Time Sensitive Networking (TSN). PubSub is de-
fined in Part 14 of the OPC Unified Architecture specification and it allows one-to-
many or many-to-many connections. In combination with a TSN sub-layer it can
fulfill the real-time requirements for the industry.

Whitepaper 1.0 Page 1 0of 16

https://nettimelogic.tumblr.com/post/187371127220/opc-ua-server-on-a-fpga-using-open62541

/ Net Logic

Publisher Subscriber Subscriber
(Server) (Client) (Client)

Publisher Subscriber
(Server) (Client)
Publisher Subscriber Subscriber
(Server) (Client) (Client)

Together with NetTimel.ogic’'s TSN products or the TSN [IC® Plugfest Application
(Talker/Listener) an open62541 PubSub application in a MicroBlaze Softcore can be
easily combined. For the future we are targeting to realize the TSN Testbed In-
teroperability Application with the open62541 OPC UA stack and using NetTime-
Logic’'s TSN End Node [P core as realtime sub-layer.

The example FPGA project and the application are available here:
https://github.com/NetTimelLogic/opcua/tree/PubSub example

The open62541 implementation is available here (v1.0rc5):
https://qithub.com/open62541/open62541/tree/v1.0-rc5

Introduction

Compared to the Client/Server example no changes in the MicroBlaze FPGA de-
sign are needed. However, some adjustments in the CMake and BSP for lwip are re-
quired.

The following implementation is based on the open62541 documentation which de-

scribes how to build the library and how to work with Publish/Subscribe. The appli-
cation creates an OPC UA server thread which is publishing a Dataset. It runs with
FreeRTOS and lwip. The FPGA use a MicroBlaze softcore with DDR3, Axi Ethernet
Lite, Axi Uart Lite AXI GPIO and AXI| Timer. As hardware the same Arty A7-100T
development board from DIGILENT as before is used.

Whitepaper 1.0 Page 2 of 16

https://www.nettimelogic.com/tsn-products.php
https://www.nettimelogic.com/tsn-iic-plugfest-app.php
https://www.nettimelogic.com/tsn-iic-plugfest-app.php
https://www.nettimelogic.com/tsn-end-node.php
https://www.nettimelogic.com/tsn-end-node.php
https://github.com/NetTimeLogic/opcua/tree/PubSub_example
https://github.com/open62541/open62541/tree/v1.0-rc5
https://open62541.org/doc/current/toc.html
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/

_"/Net neLogic

MicroBlaze AXI
openoc2541 AXIUart
AXI
— | Ethemet
BRAM AXI
GPIO
MIGT
(DDR3)

Required tools
To build the full project, the following tools are required:
To build the full project following tools are required:

e Xilinx Vivado 2019.1

e Xilinx SDK 2019.1

e CMAKE (Python 2.7.x or 3.x)

e UA Expert

e Wireshark

BSP adjustments for LWIP

For the simple OPC UA server some adjustments were needed in the Iwip BSP of
Xilinx SDK.

See Line 10-19: https://github.com/open62541/open62541/blob/master/arch/com-

mon/ua_lwip.h

The Pub/Sub functionality need some more adjustments of the BSP. It should be
enough to enable the LWIP_IGMP. Nevertheless, it was not possible to generate
successfully the BSP again with this option enabled. As a workaround the addi-
tional needed defines are added to the already created (in the previous post)

open62541 section in the lwip211.tcl (bold) file. This allows to use the standard com-
pilation flow afterwards .
1. Go to:

Whitepaper 1.0 Page 3 of 16

https://cmake.org/
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.wireshark.org/download.html
https://github.com/open62541/open62541/blob/master/arch/common/ua_lwip.h
https://github.com/open62541/open62541/blob/master/arch/common/ua_lwip.h
https://nettimelogic.tumblr.com/post/187371127220/opc-ua-server-on-a-fpga-using-open62541

/ Net Logic

CAXilinx\SDK\2019.\data\embeddedsw\ThirdParty\sw_ser-
vices\Iwip211_v1_O\data

2. Open the Iwip211.tcl

3. Search the proc generate_lwip_opts {libhandle} and go to the end of this pro-
cedure

4. Before the line puts $lwipopts_fd “\#endif” add the following code:
#OPEN62541 implementation

set open62541 impl [expr [common::get property CON-
IG.open62541 impl S$libhandle] == true]
if {$open62541 impl} ({
puts $lwipopts fd “\#define LWIP COMPAT SOCKETS 0”
puts $Slwipopts fd “\#define LWIP SOCKET 1”
puts $Slwipopts fd “\#define LWIP DNS 1”
puts $Slwipopts fd “\#define SO REUSE 1”

puts $lwipopts fd “\#define LWIP TIMEVAL PRIVATE 0”
1/’

puts $lwipopts fd “\#define LWIP IGMP
puts $lwipopts fd “\#define LWIP MULTICAST TX OPTIONS 1”

puts $Slwipopts fd “”

o ==
wn
Q
<
®
o
>
®
=
®

After this change and a restart of Xilinx SDK the new option will be visible in the
BSP settings GUI of the Iwip stack.

Design preparation

For the detailed design preparation steps please check the previous post OPC UA
Server on a FPGA using open62541.

Custom information models

In the basic OPC UA server example the default value “reduced” is used as
UA_NAMESPACE_ZERO option. For the UA_ENABLE_PUBSUB option it will com-
pile an additional nodeset and datatype file into the name space zero generated
file. Depending on what information will be published this might be not enough.
To be on the safe side UA_NAMESPACE_ZERO = “FULL” would be the easiest so-
lution. Since the MicroBlaze CPU is not a very powerful, it is not recommended to
use the full namespace. This example would take up to 30 minutes, until the server

Whitepaper 1.0 Page 4 of 16

https://nettimelogic.tumblr.com/post/187371127220/opc-ua-server-on-a-fpga-using-open62541
https://nettimelogic.tumblr.com/post/187371127220/opc-ua-server-on-a-fpga-using-open62541

_"/Net neLogic

is up and running! It is highly recommended to use an optimized/customized
nodeset for such an application.
https://opcua.rocks/custom-information-models

XML Nodeset Compiler

Most probably in a final application all the variables/objects etc. are not defined
manually in the code. There are different tools (commercial but also open source)
available to create this information in a GUI. Out from these tools an XML with the
OPC UA Nodeset schema can be exported.

Open62541 provides a compiler which creates C code from the XML Nodeset. This
code creates then all the object instances as defined.

The complete documentation can be found here:
https://open62541.org/doc/1.0/nodeset compiler.html

The compiler result for iicNs.c/h are available in git.

Nodeset in this example
Since this example is targeting for the IIC TSN Testbed application, the Nodeset
from there is used. It has the following structure with different types of variables:

=) Root
v |3 Objects
e Server
¥ e iicTsnTb
v o Application
@ Applicationld
ApplicationSequenceNr

ApplicationSpecificData
2 ApplicationTimeStamp
v @ Generalinfo

2 DeviceName

@ InteropfppCmd
d InteropAppStatus

‘d IntercpAppVersion
@ Talkerld
@ VendorMame
v g Tsninfo
2l AS_GrandmasterChanges
@ AS_Grandmasterld
& AS State
AS_TimeOffset
Expected T Offset
@ Tsn_LastTTimestamp

For this Information Model the minimal Nodeset with PubSub is not sufficient,
therefore a customized one was created. This can be done as described above, or
even simpler, just by using the already precompiled open62541.c/h files

Whitepaper 1.0 Page 5 of 16

https://opcua.rocks/custom-information-models/
https://open62541.org/doc/1.0/nodeset_compiler.html
https://github.com/NetTimeLogic/opcua/tree/PubSub_example/Src/Sdk_workspace/OpcServer/src
https://github.com/NetTimeLogic/opcua/tree/PubSub_example/Src/open62541_pregenearated

/ Net Logic

CMAKE

For this example, the open62541 tag v1.0rc5 was used:
https.//qgithub.com/open62541/open62541/tree/v1.0-rc5
The easiest way is to work with the CMake GUI. Later it can be used in Xilinx SDK.

If the CMake library build is already available only two adjustments are needed:

UA ENABLE PUBSUB = ON
A ENABLE PUBSUB INFORMATIONMODEL = ON

If a new build is created, CMake for open62541 is used with the following adjust-

[

ment:

[

A ENABLE AMALGAMATION = ON|
A ENABLE HARDENING = OFF

A ENABLE PUBSUB = O

=] k=] k=

A ENABLE PUBSUB INFORMATIONMODEL = O

UA ARCH EXTRA INCLUDES = <path to microblaze/include>

UA ARCH REMOVE FLAGS = -Wpedantic -Wno-static-in-inline -Wre-

dundant-decls

CMAKE C FLAGS = -Wno-error=format= -mlittle-endian -Dcon-

figUSE PORT OPTIMISED TASK SELECTION=0 -DconfigAPPLICATION AL-
LOCATED HEAP=3 -DUA ARCHITECTURE FREERTOSLWIP

UA LOGLEVEL = 100 (optional for debugging)
1. Start the CMake GUI

2. Select the correct source code path where the open62541 GIT repository is lo-

cated and the path where the binaries were built last time:

Whitepaper 1.0 Page 6 of 16

https://github.com/open62541/open62541/tree/v1.0-rc5

/ Net Logic

CMake 3.13.2 - C:/openb2341_lib - a X
P

Eile Tools Options Help

Where is the source code: |C: Jopen62541 | Browse Source...
Where to build the binaries: |C:flﬂ|:|En62541_|ih v | Browse Build...
Search: | Grouped Advanced |5P Add Entry Remaove Entry
Mame
I's 3

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Generate Cpen Project | Current Generator: None

3. Click Configure
4. Change the two parameters:
UA ENABLE PUBSUB = ON|

UA ENABLE PUBSUB INFORMATIONMODEL = ON|
5. Click again on Configure and after that on Generate
6. Generate again the open62541.c/h file in Xilinx SDK.
Make Target->all

Whitepaper 1.0 Page 7 of 16

/\/ NetTimeLogic

= EE Qutline @Documents (@) Make Target 3 ="' =
A

@@& | # b
y (&5 OpcFreeRTOS
{Hll: OpcFreeRTOS_bsp
v [openb2541-Debug@opent254]_build
(= [Source directory]
= _CPack_Packages
(== [Targets]
== arch
&= bin
= CMakeFiles
= doc
= doc_src
(== src_generated
= tools
(@) :all
(@) : clang-tidy
(@) :clean
(@ : cpplint
(@) : edit cache

7. The amalgamation files open62541.c/h should have now the PubSub feature in-
cluded

A pre-generated version of the open62541.¢c/h files is available on git.

Creating the OPC UA server application

The complete SDK workspace is available on git.

C/C++ Build Settings
For the build there are no new adjustments required. Please take the same build
settings as in the previous post for the simple OPC UA Server.

Linker script
The linker script setting for the memory must be increased, In the example we use
Now:

e Heap Size: 20MB

e Stack Size: 20MB

OPC UA Server PubSub application
In the Xilinx SDK, the available OpcServer.c can be imported to the OpcServer ap-
plication project.

Whitepaper 1.0 Page 8 of 16

https://github.com/NetTimeLogic/opcua/tree/PubSub_example/Src/open62541_pregenearated
https://github.com/NetTimeLogic/opcua/tree/master/Src/Sdk_workspace
https://github.com/NetTimeLogic/opcua/blob/PubSub_example/Src/Sdk_workspace/OpcServer/src/OpcServer.c

/ Net Logic

In the basic server the thread stack size was defined with 4096. This is not enough
anymore and the application will report with the hook functions a StackOverFlow.
Therefore, the THREAD_ STACKSIZE was increased to 16384.

In a first step the network initialization and the basic OPC UA Server configuration
is done. Before the server starts, the PubSub specific setup is needed. The applica-
tion is targeting to be compatible with the Pub/Sub format for the IIC TSN Testbed
interoperability application

Define the PubSub connection

In the PubSub connection mainly the transport profile and the multicast network
are defined. For this case we used following settings:

transportProfile: http://opcfoundation.org/UA-Profile/Transport/pubsub-udp-uadp
Network Address URL: opc.udp://224.0.0.22:4840

Add a Publishing dataset

This is the collection of the published fields. All PubSub items are linked to this one.
As PublishedDataSetType the following configuration is used:
publishedDataSetType: UA_PUBSUB_DATASET_PUBLISHEDITEMS

Add fields (variables) to the dataset

Here the variables are added by their Nodelds to the Published data set. Depend-
ing on the configuration the order of adding the variables has an impact how the
published data will look like.

Additionally, a value is set. It is important that the variables have a value (not
NULL). If a variable is empty there is just no content for the DataMessage to pub-
lish in the PubSub frame.

Add the writer group

The writer group is the important part when it comes to how the message looks
like. The whole configuration for the NetworkMessage Header (Extended) is done
here (OPC UA Part 14 Chapter 7.2.2.2).

Open62541 allows the specific configuration with the networkMessageContentMask
configuration.

For the IIC TSN Testbed interoperability application following settings will be used:

Whitepaper 1.0 Page 9 of 16

/ Net Logic

[UA UAD
PNETWORKMESSAGECONTENTMASK WRITERGROUPID)

[UA U
| UA UADP
NETWORKMESSAGECONTENTMASK NETWORKMESSAGENUMBER

[UA UA
DPNETWORKMESSAGECONTENTMASK SEQUENCENUMBER

| UA UA
DPNETWORKMESSAGECONTENTMASK PAYLOADHEADER

| UA UAD

R EHeEE 5 <_TIMESTAMP)

Beside the NetworkMessage Header also settings like the publishing interval or the

encoding MimeType are done here.

Add the dataset writer

This part is the second important part and defines how the DataSetMessage
Header looks like (OPC UA Part 14 Chapter 7.2.2.3.4).

With the dataSetMessageContentMask and the dataSetFieldContentMask this can
be configured.

For the IIC TSN Testbed interoperability application all this additional information is
disabled:
dataSetWriterMessage->dataSetMessageContentMask = UA UADPDATASETMES-

SAGECONTENTMASK NONE;

dataSetWriterConfig.dataSetFieldContentMask = UA DATASETFIELDCON-

TENTMASK NONE;

Start the Server

After all the setup for the variables and the PubSub data set has been done the
server is ready to start.

Starting the server takes quite some time with this example. After about two
minutes the OPC UA Server starts publishing.

Listen to the OPC UA publisher

If there is no Subscriber available there are other options to understand a bit how
the variables are published. Either the UaExpert can give some information or via
Wireshark the real PubSub Frame can be analyzed.

Whitepaper 1.0 Page 10 of 16

/ Net Logic

Before a connection to the OPC UA server is possible the application needs to be
compiled and started on the FPGA. After a successful start you should see the fol-

lowing printout on in the Terminal:

UA Expert

UA Expert is also a helpful tool to check some stuff about PubSub. With the option
UA_ENABLE_PUBSUB_INFORMATIONMODEL the published dataset information is
available.

All the configured nodes from the previous steps are now visible (UADP Connec-
tion, PublishedDataSets, DataSetWriter etc.) as a structure directly from the server.

) Root
v I Objects
v g Server
¢ Auditing
¥ GetMonitoreditems
MNamespacefrray
we Mamespaces
~ i PublizshSubscribe
v |Z) PublishedDataSets
¥ g iic TSN test
ConfigurationVersion
¢ DataSetMetaData
PublishedData
waa iic TSN DataSetWriter
e Status
¥ SupportedTransportProfiles
ww UADP Connection 1
¢ ServerArray
e ServerCapabilities
we ServerDiagnostics
e ServerRedundancy
@ ServerStatus
¢ Servicelevel
e VendorServerinfo
ww iicTenTh

In the Attribute of the object PublishedData all the published variables are visible.

Whitepaper 1.0 Page 11 of 16

/\/ NetTimeLogic

Whitepaper 1.0 Page 12 of 16

/\/ NetTimeLogic

Attnbute

¥ MNodeld
Mamespacelndex
IdentifierType
Identifier
ModeClass
BrowseMame
DisplayMame
Description
Writehazk
UserWriteMaszk
RolePermissions

UserRolePermissions

WYalue

i=335877163 []

0

Mumeric
335877163 []
Wariable

0, “PublishedData"
" "PublishedData"

Badattributeldinvalid (0w 80330000)

LEIL

Badattnbuteldlnwalid (Jx803

AccessRestrictions BadAttributeldinvalid (Tx 80350000
¥ Walue
SourceTimestarmp 01.01.1970 01:12:13.730
SourcePicoseconds 0
ServerTlimestamp 01.01.1970 01:12:13.730
ServerPicoseconds 0
StatusCode Good (k00000000
v Value PublishedVariableDataType Arrayl[13]
v (0] PublishedVariableDataType
* PublishedVYari.. Modeld
Mamespa... 2
Identifier... Mumeric
Identifier G051
Attributeld 13

Samplinglnte.. 0
DeadbandType 0
DeadbandVal... 0

IndexRange

SubstituteValue Mull

MetaDataPro... QualifiedMame Array[0]
(1] PublishedVariableDataType
(2] PublishedVariableDataType
(3] PublishedVariableDataType
(4] PublishedVariableDataType
(5] PublishedVariableDataType
6] PublishedVariableDataType
(7 PublishedVariableDataType
(8] PublishedVariableDataType
(9] PublishedVariableDataType
[10] PublishedVariableDataType
[11] PublishedVariableDataType
[12] PublishedVariableDataType
[13] PublishedVariableDataType
[14] PublishedVariableDataType

Whitepaper 1.0 Page 13 of 16

/\/ NetTimeLogic

Wireshark

To check if the content of the published frame manually, Wireshark is the simplest
way. This sample application uses a publishing interval of 5000 ms, so every 5s a
published frame is received in Wireshark.

(N |uaud|:r

MNo. Time source Destination Protocol Length Info
2 unknown

=

2 unknown

=

2 unknown

h
=

) WD 00 B0 N W o

unknown
unknown

=

2 unknown

=

2 unknown

2 unknown

=

unknown
P 2 unknown
UAUDP 232 unknown

Frame 7: 232 bytes on wire (1856 bits), 232 bytes captured (1856 bits) on interface @
Ethernet II, Src: Xilinx @9:12:34 (99:0a3:35:00:12:34), Dst: IPvamcast_l6 (01:90:52:00:00:16)
Internet Protocol Version 4, Src: 192.168.1.16, Dst: 224.8.8.22
» User Datagram Protocol, Src Port: 62518, Dst Port: 48408
v Universal Alcatel/UDP Encapsulation Protocol, unknown (@xf1)
Opcode: Unknown (241)

@l e Se @@ 00 16 08 8a 35 €9 12 34 83 8. 45
@8 da 81 f7 @@ @8 ff 11 17 53 cB a3 @1 8a =B
aa 4 12

88

L L= e B T~
@ E ~h @O @

'g Lo I o B < <]

L L = S Vi o R)

om MM ®n

i I T T Y I 5 R |

S

iy
=B~
ca
[ex]

oL
ERE8RFLO8E
(¥,]
a By
5
o

&
@ @ 0
wu

oM LB WM :g o
=
A

L
) h @ B0 h @ = —h R
@

=

B
5
7
a
B
3
B
&
7

+a
]
]

Looking into the encoding of the frame above the following information is pub-
lished:

Whitepaper 1.0 Page 14 of 16

/\/ NetimeLogic
NetworkMessageHeader
Version/Flags |Extended Flagsl |PubId

fl 21 01 00
GroupHeader

Group Flags WriterGroupId GroupVersion |NetworkMessageNumber |Seghir
0f aL oo 34 89 £3 21 01 00
PayloadHeader
MsgCnt WriterId
1 a0 oo
Extended NetworkMessageHeader

c5 00

TimeStamp
‘CU d3 44 68 el bl 5d 01

DataSetMessageHeader
Flagsl

1
DataSetMessage payload

Field Count

0f 00

IIJ:p:’arlable [{)}:irigion) gﬁ;:ﬁ, Variable Data

03 ee

03 Oc

03 00

8c a1l 00 00 00 20 00 00 00 4e €5 74 54 69 6d 65 4c 6f €7 69 63 5f 47 6d 62 48 5f 2d S5f 2d S5f 2d S5f 2d Sf 2d S5f 2d 5f 2d 5f
8c 0l 00 00 00 Oa 00 00 00 41 72 74 79 20 41 37 5f 2d 5f

o1 00 00 00

o7 00 20 00 00

09 45 23 01 00 00 00 00 00

05 00 00

[ul:] 00 00 00 00 00 00 00 00

03 00

8f a1l 00 00 00 0% 00 00 00 31 32 33 34 35 36 37 38

08 00 10 00 00

03 05

03 04

8f 01 00 00 00 20 00 00 00 54 53 4e 20 41 T0 70 6c 6% 63 61 74 6% 6f 6e 53 TO 65 63 69 66 69 63 44 61 T4 61 20 33 32 7§ 42
Summary

The used version of open62541 (v1.0rc5) allows working with Pub/Sub and allows
to do most of the configurations for the header information. However, there were
some adaptations required to use it for the IIC TSN Testbed interoperability appli-
cation.
In our test we saw some problems with some header information.
GroupHeader:

e GroupVersion was assigned

e SequenceNumber was not assigned
Extended NetworkMessageHeader:

e Timestamp was empty
As a workaround we have made some adaptations in the file src/pubsub/ua_pub-
sub.c by adding some assignments after the following code line:

nm.groupHeader.writerGroupId = wg->config.writerGroupId;

add:
nm.groupHeader.groupVersion = wgm->groupVersion;
nm.groupHeader.sequenceNumber = sequenceNumber;

nm.timestamp = UA DateTime now () ;

Whitepaper 1.0 Page 15 of 16

/ Net Logic

With these adjustments it was possible to create the frame as shown in the
Wireshark capture.

In a next step we will try to be fully compatible with the [IC TSN Testbed interoper-
ability application and combine it with our TSN core for real time publishing.

Whitepaper 1.0 Page 16 of 16

