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Content o/ NetTimeLogic

* Why NTP and CSPTP fully in Hardware?
 Explanation of the Design

« Performance and Limitations of the current Design
« Measurements
 Simulations

« Scheme for higher Link Speeds and higher Request Rates
« Scheme how to integrate Security
« Conclusion
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Why NTP and CSPTP fully in Hardware? o/ NetTimeLogic

What is the problem we want to solve?

« Both NTP and Client-Server PTP (CSPTP) are unicast Protocols
« One Server needs to serve many (million) Clients

« Number of Clients can easily go into Millions in Datacenters or
Public NTP Servers

« Handling of Millions of Request per Second is challenging with
embedded CPUs
 Requires powerful CPUs due to the sequential handling of data

* Interrupt load is quite high for high Ethernet traffic, CPUs are quite busy
transferring data from/to the Ethernet interface

« Powerful CPUs require a lot of Power and are expensive
« Easily goes up to 100s of Watts for IMio Reqguests/s
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Why NTP and CSPTP fully in Hardware? o/ NetTimeLogic
Why a Hardware/FPGA approach?

* High Performance with Low Power and Low Costs

« Unbeaten compared to other approaches => ~IMio Request/s with
3IWatts on an FPGA for ~40%

« No CPU load => Coprocessor
« Hardware Timestamping with Nanosecond resolution
« For both NTP and CSPTP

« Handle all CSPTP frames as pure One-Step
« Reduce the message exchange to 2 messages (1 request => 1 response)

 Line-Speed handling of frames (requests and responses)
 Pipelining, full parallelism in FPGA comes handy
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Why NTP and CSPTP fully in Hardware? o/ NetTimeLogic
Why a Hardware/FPGA approach?

« Stateless Protocols
« No Lookup etc. which makes the implementation pretty straight forwarad
 Pure data processing: receive a request => create a response

« Easy to scale

 Larger FPGAs (more cores), higher frequencies can easily increase the
performance by factors of 10 and higher without the same factor in
costs and power consumption

« And of course because we can ©

 Creating Synchronization cores for FPGAS as coprocessors is what we
do
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Explanation of the Design o/ NetTimeLogic
Reguirements first

« Shall handle at least 1G interfaces (10/100/1000) at line speed
« ~TMio Requests/s
 Shall be able to handle burst of requests

Shall answer ARP/ICMP request in hardware as well
 Shall not be the limiting factor for the overall system performance

Shall support IPv4, IPv6 for NTP
« SNTP Server (NTPv4) as Unicast/Multicast/Broadcast (no signing 1Ist)

Shall support L2, IPv4, IPv6 for CSPTP
« The CSPTP approach shall be FlashPTP at the time it was designed

Shall have high accuracy hardware timestamps (~4ns)
Shall have one-step support for PTP
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Explanation of the Design o/ NetTimeLogic
Reguirements first

Keep NTP separate from CSPTP
* Not all need both, but share the same physical interface

Have a small resource footprint

« As small as possible by still being modular

« To allow for scaling

Allow scaling

* |nstantiate multiple cores for load sharing

Allow to supervise Status and do initial Configuration

Complete Co-Processor, no run-time interaction shall be required
Common on-chip-bus and conversion to outer-world interfaces

¢ So the interface to the PHY can be swapped easily (MIl/GMII/RGMII..)
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Explanation of the Design o/ NetTimeLogic
CSPTP

« Why FlashPTP as CSPTP?

 Allows for pure one-step operation which brings down the message
exchange to 2 per measurement (as for NTP)

 This is the main reason, since this allows the highest throughput
e |s something you need to do in hardware

 Single frame type + TLV

« Easy to parse and generate
 Expected frame size is known

« Mapping for L2, IPv4, IPv6
« Matches pretty much our idea of CSPTP ©
« Once IEEE1588.1is ready we can easily adapt to it since it’'s an FPGA
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Explanation of the Design o/ NetTimeLogic

Design considerations

 Split design into an independent receive path and a transmit path
« Back pressure on data bus

 Receiving does not use back pressure on the data bus since data from
PHY can not be slowed down

 Transmitting allows back pressure on the data bus e.g. for lower link
speeds or arbitration between multiple instances

« Use a FIFO between the receive and transmit path

« Only forward Info from the request through the FIFO which is relevant
for the response

¢ Reading and writing time from/to the FIFO must be short (< frame)

« Reception of new requests can happen during transmission of the
response
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Explanation of the Design o/ NetTimeLogic
Design considerations

« AXI Stream (AXIS) as on-chip-bus for frames

« AXI4L Memory Mapped (AXI4L) for initial configuration and status
supervision

 Only initial config required

« Keep basic design identical for NTP and CSPTP

« Simple one-core solution for 10/100/1000Mbit Ethernet
« With (R)(G)MIl interfaces
 Higher Link speeds with more cores => explained later

« 50MHz System clock
 To allow also very low performance FPGAS

In the path between PHY and MAC (MAC is optional)

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 10



Explanation of the Design o/ NetTimeLogic
Key Modules and Functionalities
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Performance o/ NetTimeLogic
Measurements

« AIONIX mini as NTP and CSPTP Server

 100Mbit only (based on an Digilent Arty \&
A7 DevBoard with an AIONYX shield anad
AIONYX PMOD for GNSS), USB Powered
=> ~100k Request/s possible

 Using Ostinato™ on a PC as an NTP and CSPTP Request Sender
Simulate ~100k Clients, Frame capture with ProfiShark™ on the wire

« Check iIf Responses come, check status counters on Server

« With a Gigabit port the performance increases linear by 10 to TMio
Requests per second
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Performance o/ NetTimeLogic
Measurements NTP

« For NTP the theoretical max frame rate for requests is ~110k/s at
100Mbit/s:
« Request/Response is 94 bytes (IPv4, FCS)

« An NTP frame with min itf and preamble represents 94*8+64+96bits =
O12bits

¢ 100Mbit/912bit per frame = max 109649 frames/s
* Frame generator can generate ~<100k frames per second

‘ Frame Send Rate (fps)
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Performance
Measurements NTP

« Sent TMio Requests (~10s)
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Performance o/ NetTimeLogic
Measurements CSPTP

« For CSPTP the theoretical max frame rate for requests is ~92k/s at
100Mbit/s:
« Request/Response is 116 bytes (L2, TLV with ClockInfo, FCS)

« A CSPTP frame with min itf and preamble represents 116*8+64+96Dbits =
1088bits

¢ 100Mbit/1088bit per frame = max 91911 frames/s

 This rate is only given when both the Request and Response are a
single Frame!
e One-Step operation
« Two-Step will divide the performance by a factor of 2
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Performance o/ NetTimeLogic
Measurements CSPTP
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Performance o/ NetTimeLogic
Simulation

* FPGA designs can be easily simulated e.g. with Mentor Modelsim®
 Simulate a 1G GMII interface and full line speed of Requests

« Check if Response is received for every Request and if timestamps

correct
 Full line speed 1G of requests can be handled by the NTP Server
« Depending on the CSPTP mode full line speed 1G of requests can be
handled, if responses are larger than the requests some requests need

to be dropped and the long term response rate is response-
size/request-size (except initially where some buffering still works)

 This is in principal amplification, FlashPTP avoids this by padding Requests
to the size of Responses

% IEEE  ooerna .
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Performance o/ NetTimeLogic
Simulation

« Simulations shows that the theoretical max can be achieved for 1Gb

« For NTP >1000000 Reqguests/s
« For CSPTP >910000 Reqguests/s

« The max when the internal bus AXIS without interface adapter (nho
interframe gap and preamble) is used is even ~20% higher

 This is interesting since we will show later how we can go to even higher
rates

« Testing on a different platform with a 1G port prove the simulation
result
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Limitations ¢ NetTimcLogic
What is [imiting the Performance?

 Link Speed
 Clock Frequency of the Core

 Interleaved Two-Step Requests for CSPTP are bad

« Two Step requests (for FlashPTP) are bad because the Server must
merge Sync and FollowUp to have all information for a Response

* |n a situation of a very high request rate a Sync and FollowUp pair could
be interleaved by other Syncs and FollowUps from other Clients which
would require buffering and lookup of pairs

« Current scheme is to expect only Sync and FollowUps from a Client
back-to-back and drop iIf not a pair => IEEE1588.1 should Iimit the
request to a single message as for NTP
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Scheme for higher Link Speeds v/ NetTimeLogic
How can this be applied to 10/25/100/400G Links

Create an Interface Adapter for 10/25/100/400G Links
« Only run the required parts on high freguencies, wide bus, Core not

>10G requires also higher performance FPGAs due to ultra wide
bus interfaces and high frequencies
« More power, more expensive

Add a filter for NTP/CSPTP and ARP/ICMP frames to drop
unneeded frames to have the best use of the bandwith

Reduce internal bandwidth to what can be done on the internal
interface

Deterministic buffering for downscaling and upscaling of
bandwidth for hardware timestamping
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Scheme for higher Request Rates o/ NetTimeLogic
How to go above IMio Request/s on higher Link Speeds

e
* Increase Clock Frequency of core: e.g. 100MHz instead of S5OMHz

<% |EEE

Only ~doubles the throughput
Makes timing closure difficult or impossible on low performance FPGAS

Needs at some point higher performance FPGAs => more power, more
expensive

Quite limited in scaling (~350Mhz is the max in a low range FPGA, for a
simple design and not a more complex component as this)
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Scheme for higher Request Rates o/ NetTimeLogic
How to go above IMio Request/s on higher Link Speeds

 Instantiate the core multiple times
« Uses more resources but also gives higher performance
 Scales well (as long as there are resources)

« Max request rate per core is ~1.2Mio/s @ 50MHz
« Roughly 1Gbit is TMio Requests/s meaning 1 core per Gbit
o For full 10Gbit line speed Request processing => 10 cores

 Create a load balancer to share between multiple cores
* Interface bandwidth to and from the core (~1.2G) are the limiting factor
« Use a FIFO per core: fill with line Speed (e.g. 10G) and pull with ~1.2G

« Check which FIFO has the most space left and fill this, if equal take next
then previous, if non has space for a frame, drop it => shortest response
time and equal share of load

<% |EEE
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Scheme for higher Request Rates o/ NetTimeLogic
How to go above IMio Request/s on higher Link Speeds

 Arbitrate between multiple cores

 Create a deterministic latency from the timestamp signaling and actual
sending

« Bandwidth conversion from N times ~1.2G to e.g. 10G
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Scheme for higher Request Rates '/ NetTimeLogic
How to go above IMio Request/s on higher Link Speeds
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Scheme how to integrate Security o/ NetTimeLogic
AUTHENTICATION TLV for (CS)PTP?

e PTP foresees an AUTHENTICATION TLV for authentication of PTP
messages
 Authenticates the whole message (direct mode)

 AIll TCs must also recalculate the sighning because of altering frames

« Symmetric Key exchange is something to be done on a CPU
« E.g.on a softcore CPU
 [tisimportant that no table is required on a per client base (group keys)
 This can be added as add-on in a pipelined manner to the current
design

* [t must be assured that authentication and signing don'’t take longer
than the frame reception/transmission
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Scheme how to integrate Security o/ NetTimeLogic
NTS?

« NTS is widely used for NTP in the public domain
 Especially for public Servers
 For closed environments like a Datacenter this might be overkill

« NTS for CSPTP does not exist yet
 This could potentially be added to CSPTP as option

o Still stateless scheme for Server

* NTS is based on a trusted common Key Establishment Server for
initial Key establishment and cookies

 This could be done on a CPU, since it is basically used initially only
 |tis ok that this takes a while
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Scheme how to integrate Security o/ NetTimeLogic
NTS?

« Cookies in the Client Request can be authenticated by the Server
and the Cookies in the Server Response can be authenticated on
the Client

* |t must be assured that authentication can be done pipelined and will
not take longer than a frame reception

* [t must be assured that signing can be done pipelined and will not take
longer than a frame transmission

« Response Cookie is based on the Request Cookie, Server Keys and
Nonce with AEAD Algorithm (AES)

« Cookie generation also needs to be pipelined and must not take longer
than the reception of a frame

<% |EEE

& ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 31



Scheme how to integrate Security o/ NetTimeLogic
NTS?

« Authentication and Signing can be pretty good pipelined in FPGASs
« However, pipelining is limited by the duration of a frame

« At some point pipeline steps need to do more per cycle which means
the resource usage goes up gquite badly

 Integration of NTS in the current concept (without KE) is possible
« Authentication can be done as a pipelined task as add-on
« Cookie creation can be done as a pipelined task as add-on
 Signing can be done as a pipelined task as add-on
« Key Exchange could be moved to a Soft-core CPU
 Either only the Key Exchange part
 Or also the KE-Server on the same CPU (as many NTP Servers do)
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Scheme how to integrate Security o/ NetTimeLogic
NTP vs CSPTP

 Since the schemes are not necessary the same for NTP and CSPTP
it now made perfect sense to split the two designs to avoid to
complicate the design
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Conclusion o/ NetTimeLogic

A fully FPGA based NTP and CSPTP Server can achieve outstanding
high performance

« The performance to power to costs ratio is unbeatable
 IMio Requests with <3 Watts on an FPGA for <40%

 The fully FPGA based solution can scale quite easily to N-Mio
requests per second with reasonable effort and costs

« Security aspects can be handled very efficient on the FPGA due to
pipelining and full parallelism however authentication/signing uses
a lot of resources and Key Exchange (NTS-KE Server, PTP Key
exchange) are not useful to be built in FPGAs

<% |EEE

& ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 34



Questions? o/ NetTimeLogic

Thank you!

www.nhettimelogic.com
contact@nettimelogic.com
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