: — IEEE October 7-1

& ISPCS 5074

‘/ Net Logic

1 Mio Reguests with less than 3 Watts

NTP and Client-Server PTP fully in Hardware



Content o/ NetTimeLogic

* Why NTP and CSPTP fully in Hardware?
 Explanation of the Design

« Performance and Limitations of the current Design
« Measurements
 Simulations

« Scheme for higher Link Speeds and higher Request Rates
« Scheme how to integrate Security
« Conclusion

<% |EEE

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074



Why NTP and CSPTP fully in Hardware? o/ NetTimeLogic

What is the problem we want to solve?

« Both NTP and Client-Server PTP (CSPTP) are unicast Protocols
« One Server needs to serve many (million) Clients

« Number of Clients can easily go into Millions in Datacenters or
Public NTP Servers

« Handling of Millions of Request per Second is challenging with
embedded CPUs
 Requires powerful CPUs due to the sequential handling of data

* Interrupt load is quite high for high Ethernet traffic, CPUs are quite busy
transferring data from/to the Ethernet interface

« Powerful CPUs require a lot of Power and are expensive
« Easily goes up to 100s of Watts for IMio Reqguests/s

<% |EEE

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074



Why NTP and CSPTP fully in Hardware? o/ NetTimeLogic
Why a Hardware/FPGA approach?

* High Performance with Low Power and Low Costs

« Unbeaten compared to other approaches => ~IMio Request/s with
3IWatts on an FPGA for ~40%

« No CPU load => Coprocessor
« Hardware Timestamping with Nanosecond resolution
« For both NTP and CSPTP

« Handle all CSPTP frames as pure One-Step
« Reduce the message exchange to 2 messages (1 request => 1 response)

 Line-Speed handling of frames (requests and responses)
 Pipelining, full parallelism in FPGA comes handy

<% |EEE

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074



Why NTP and CSPTP fully in Hardware? o/ NetTimeLogic
Why a Hardware/FPGA approach?

« Stateless Protocols
« No Lookup etc. which makes the implementation pretty straight forwarad
 Pure data processing: receive a request => create a response

« Easy to scale

 Larger FPGAs (more cores), higher frequencies can easily increase the
performance by factors of 10 and higher without the same factor in
costs and power consumption

« And of course because we can ©

 Creating Synchronization cores for FPGAS as coprocessors is what we
do

<% |EEE

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074



Explanation of the Design o/ NetTimeLogic
Reguirements first

« Shall handle at least 1G interfaces (10/100/1000) at line speed
« ~TMio Requests/s
 Shall be able to handle burst of requests

Shall answer ARP/ICMP request in hardware as well
 Shall not be the limiting factor for the overall system performance

Shall support IPv4, IPv6 for NTP
« SNTP Server (NTPv4) as Unicast/Multicast/Broadcast (no signing 1Ist)

Shall support L2, IPv4, IPv6 for CSPTP
« The CSPTP approach shall be FlashPTP at the time it was designed

Shall have high accuracy hardware timestamps (~4ns)
Shall have one-step support for PTP

<% |EEE

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074



Explanation of the Design o/ NetTimeLogic
Reguirements first

Keep NTP separate from CSPTP
* Not all need both, but share the same physical interface

Have a small resource footprint

« As small as possible by still being modular

« To allow for scaling

Allow scaling

* |nstantiate multiple cores for load sharing

Allow to supervise Status and do initial Configuration

Complete Co-Processor, no run-time interaction shall be required
Common on-chip-bus and conversion to outer-world interfaces

¢ So the interface to the PHY can be swapped easily (MIl/GMII/RGMII..)

< |EEE

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074



Explanation of the Design o/ NetTimeLogic
CSPTP

« Why FlashPTP as CSPTP?

 Allows for pure one-step operation which brings down the message
exchange to 2 per measurement (as for NTP)

 This is the main reason, since this allows the highest throughput
e |s something you need to do in hardware

 Single frame type + TLV

« Easy to parse and generate
 Expected frame size is known

« Mapping for L2, IPv4, IPv6
« Matches pretty much our idea of CSPTP ©
« Once IEEE1588.1is ready we can easily adapt to it since it’'s an FPGA

<% |EEE

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074



Explanation of the Design o/ NetTimeLogic

Design considerations

 Split design into an independent receive path and a transmit path
« Back pressure on data bus

 Receiving does not use back pressure on the data bus since data from
PHY can not be slowed down

 Transmitting allows back pressure on the data bus e.g. for lower link
speeds or arbitration between multiple instances

« Use a FIFO between the receive and transmit path

« Only forward Info from the request through the FIFO which is relevant
for the response

¢ Reading and writing time from/to the FIFO must be short (< frame)

« Reception of new requests can happen during transmission of the
response

<% |EEE

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074




Explanation of the Design o/ NetTimeLogic
Design considerations

« AXI Stream (AXIS) as on-chip-bus for frames

« AXI4L Memory Mapped (AXI4L) for initial configuration and status
supervision

 Only initial config required

« Keep basic design identical for NTP and CSPTP

« Simple one-core solution for 10/100/1000Mbit Ethernet
« With (R)(G)MIl interfaces
 Higher Link speeds with more cores => explained later

« 50MHz System clock
 To allow also very low performance FPGAS

In the path between PHY and MAC (MAC is optional)

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 10



Explanation of the Design o/ NetTimeLogic
Key Modules and Functionalities

LJART—— -
GNSS ) CLOCK
Sync AdpstabicChck
I
|
TAITime
| M=z NP Server &
R
: | uTc | vt CSPTP Server
=UTCInfg=— — — || Handler — -UTCInfo ::;' - > RE‘;EI_TER
| (NTP only) E
o= uTE (NTP)
or Server Confi
TAI[FTF) Time L
-] R - ARP &
FD- .
RATS Extractor - EM':
f——Fix T5— -
A
R ]
(R)GIMI Ax Info Coniral b o | [ Axs
to Frame | to
RIGIMII R T —_——f,—_———— e e — | L — [RIEIMI R
{RilG)H = AXIS -] splitter [~ =~ “’: [:l:f;:’ ! = RIGIMI | (RIG)H -
ITF RX | ITF RX |
Y A —_————a
F::f:e Server o Ethemet
A Handler MAC
R T
(R)(G)MI < i Frame ! | R)G@MI |
IRiGIMI T = sxis—|— | Frsme A |k s — = | - RiEMIT
s [ Arbiter ': : [;?Fc;:) I : axs RS
TET - Info ontol Convol ] | METX |
_____ oo
Yy _ _
|
- - i Broadcastl
Frame |
FD- - TXTS Bl | Creator
Creator |
—TK Ts—p - Infor | (NTP only) |
| 1

October 7-11, 2024 | Tokyo, Japan

ISPCS 2024




Performance o/ NetTimeLogic
Measurements

« AIONIX mini as NTP and CSPTP Server

 100Mbit only (based on an Digilent Arty \&
A7 DevBoard with an AIONYX shield anad
AIONYX PMOD for GNSS), USB Powered
=> ~100k Request/s possible

 Using Ostinato™ on a PC as an NTP and CSPTP Request Sender
Simulate ~100k Clients, Frame capture with ProfiShark™ on the wire

« Check iIf Responses come, check status counters on Server

« With a Gigabit port the performance increases linear by 10 to TMio
Requests per second

<™ IEEE

8 A EE October 7-11, 2024 | Tokyo, Japan S1aeto
‘@ ISPCS 2024 o



Performance o/ NetTimeLogic
Measurements NTP

« For NTP the theoretical max frame rate for requests is ~110k/s at
100Mbit/s:
« Request/Response is 94 bytes (IPv4, FCS)

« An NTP frame with min itf and preamble represents 94*8+64+96bits =
O12bits

¢ 100Mbit/912bit per frame = max 109649 frames/s
* Frame generator can generate ~<100k frames per second

‘ Frame Send Rate (fps)

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan l
T ISPCS 2024 Slide 17



Performance
Measurements NTP

« Sent TMio Requests (~10s)

October 7-11, 2024 | Tokyo, Japan

ISPCS 2024

- L
100000 |-
80000 |-

8
o000 [}

Received TMio Responses
 Frame rate was ~100k Requests/s
No Frame drops

Wireshark 1/0 Graphe: capiure_00000_2024083008 13 16 peapng

| 4 NetTimeLogic GmbH - Universal Configuration Manager

File 7

Config  Advanced

Version
Instance Nr
Read Values

Stop Refresh

Server Config
Stratum
Poll Interval
Precision

Refernece 1d

bk b mmiect ket 8022 (e = 8010081

Enabled
a Requests

Responses

Graph Name

Display Filter
ntp.flagemade
rtp.flagsmade

Mouse © drags () zooms

Color

Interval

Style
Line
Line

Lsec

T €2

W s
Packets
Packets

(] Time of day

¥ Field

1) Log scale

SMA Perind ¥ Axis Factor
None 1
Hone 1
B Automatic Update Reset

EEPROM  CLKClock
0x01010000 Mac
1 Vlan
write Values
p
Mode
0
0
0
LocL

PHY Conf

PTP Oc

o

03;

0x0000]

[ Wlan Enabled
Pv4
192.168.18.3

@ Unicast Mode

8 Multicast Mode

[ Broadcast Mode

18 Enzbled

UTC Config

Leap 59

Leap 51 O

UTC Smearing ()

utc offsetval [

UTCOffset 37

55:66

NTP Server PPS Master PPS Slave TOD Slave
Status
InProgress [ Requests Responses
1000000

InProgress [

RequestsDropped  Broadeasts

12C Conf

1000000

e J e ]

[ Clear Counters

RTC Master

/ Net

Logic




Performance o/ NetTimeLogic
Measurements CSPTP

« For CSPTP the theoretical max frame rate for requests is ~92k/s at
100Mbit/s:
« Request/Response is 116 bytes (L2, TLV with ClockInfo, FCS)

« A CSPTP frame with min itf and preamble represents 116*8+64+96Dbits =
1088bits

¢ 100Mbit/1088bit per frame = max 91911 frames/s

 This rate is only given when both the Request and Response are a
single Frame!
e One-Step operation
« Two-Step will divide the performance by a factor of 2

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 19



Performance o/ NetTimeLogic
Measurements CSPTP

~ - o
L}
Version 0x01020001 Wian 0x0000
Instance Nr 1 (0 Vlan Enabled

* Received 1Mio Responses —r =

« Frame rate was ~92k Requests/s

1000000 1000000
[ ] Domain 0 _—
Requests Dropped

Priority 1 0x30
0
Priority 2 080
Ml Viireshark - 0 Graphs - capture 00000_20240830104428 peapng - o %
Accuracy 254 () Clear Counters
Wireshark 1/0 Graphs: capture_D0000_21240830 104448.peapng
Class 006
125000
Variance Oxff
Time Source Dxal
PP Timescale @
100000 Freq Traceable @
Time Tracezble @
Leap 59 m]
fand s Leap 61 m]
E
= uTC Offset val @
2
¥ uTC Offset 37
s000
2000
ok . .
o 25 s 75 10 25 i 75
Trne (3)
Glck: 10 salect pachee 214802 (15 = 9. 1640+04)
| | Enables GrsphNeme  Display Fiter  Coler Style ¥ s ¥ Field SMAPariod Y iis Faetor
-] Requests ptp2dockide.. [l Line Packets None 1
] Responses plov2.clockide... Line Packets Hone 1
+ -l n @& ) z00ma Interval 1sec 1 Tame of day ] Log scale B Automatc Update Reset

Save As Capy L Cose | Help.

October 7-11, 2024 | Tokyo, Japan

ISPCS 2024 >lide 20




Performance o/ NetTimeLogic
Simulation

* FPGA designs can be easily simulated e.g. with Mentor Modelsim®
 Simulate a 1G GMII interface and full line speed of Requests

« Check if Response is received for every Request and if timestamps

correct
 Full line speed 1G of requests can be handled by the NTP Server
« Depending on the CSPTP mode full line speed 1G of requests can be
handled, if responses are larger than the requests some requests need

to be dropped and the long term response rate is response-
size/request-size (except initially where some buffering still works)

 This is in principal amplification, FlashPTP avoids this by padding Requests
to the size of Responses

% IEEE  ooerna .
Slide 21

" ISPCS 2074



Performance o/ NetTimeLogic
Simulation

« Simulations shows that the theoretical max can be achieved for 1Gb

« For NTP >1000000 Reqguests/s
« For CSPTP >910000 Reqguests/s

« The max when the internal bus AXIS without interface adapter (nho
interframe gap and preamble) is used is even ~20% higher

 This is interesting since we will show later how we can go to even higher
rates

« Testing on a different platform with a 1G port prove the simulation
result

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 22



Limitations ¢ NetTimcLogic
What is [imiting the Performance?

 Link Speed
 Clock Frequency of the Core

 Interleaved Two-Step Requests for CSPTP are bad

« Two Step requests (for FlashPTP) are bad because the Server must
merge Sync and FollowUp to have all information for a Response

* |n a situation of a very high request rate a Sync and FollowUp pair could
be interleaved by other Syncs and FollowUps from other Clients which
would require buffering and lookup of pairs

« Current scheme is to expect only Sync and FollowUps from a Client
back-to-back and drop iIf not a pair => IEEE1588.1 should Iimit the
request to a single message as for NTP

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan l
T ISPCS 2024 Slide 23



Scheme for higher Link Speeds v/ NetTimeLogic
How can this be applied to 10/25/100/400G Links

Create an Interface Adapter for 10/25/100/400G Links
« Only run the required parts on high freguencies, wide bus, Core not

>10G requires also higher performance FPGAs due to ultra wide
bus interfaces and high frequencies
« More power, more expensive

Add a filter for NTP/CSPTP and ARP/ICMP frames to drop
unneeded frames to have the best use of the bandwith

Reduce internal bandwidth to what can be done on the internal
interface

Deterministic buffering for downscaling and upscaling of
bandwidth for hardware timestamping

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan l
T ISPCS 2024 Slide 24



Scheme for higher Request Rates o/ NetTimeLogic
How to go above IMio Request/s on higher Link Speeds

e
* Increase Clock Frequency of core: e.g. 100MHz instead of S5OMHz

<% |EEE

Only ~doubles the throughput
Makes timing closure difficult or impossible on low performance FPGAS

Needs at some point higher performance FPGAs => more power, more
expensive

Quite limited in scaling (~350Mhz is the max in a low range FPGA, for a
simple design and not a more complex component as this)

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan l
T ISPCS 2024 Slide 25



Scheme for higher Request Rates o/ NetTimeLogic
How to go above IMio Request/s on higher Link Speeds

 Instantiate the core multiple times
« Uses more resources but also gives higher performance
 Scales well (as long as there are resources)

« Max request rate per core is ~1.2Mio/s @ 50MHz
« Roughly 1Gbit is TMio Requests/s meaning 1 core per Gbit
o For full 10Gbit line speed Request processing => 10 cores

 Create a load balancer to share between multiple cores
* Interface bandwidth to and from the core (~1.2G) are the limiting factor
« Use a FIFO per core: fill with line Speed (e.g. 10G) and pull with ~1.2G

« Check which FIFO has the most space left and fill this, if equal take next
then previous, if non has space for a frame, drop it => shortest response
time and equal share of load

<% |EEE
Slide 26

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074



Scheme for higher Request Rates o/ NetTimeLogic
How to go above IMio Request/s on higher Link Speeds

 Arbitrate between multiple cores

 Create a deterministic latency from the timestamp signaling and actual
sending

« Bandwidth conversion from N times ~1.2G to e.g. 10G

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan l
T ISPCS 2024 Slide 27



Scheme for higher Request Rates '/ NetTimeLogic
How to go above IMio Request/s on higher Link Speeds

<% |EEE

& = ﬁ October 7-11, 2024 | Tokyo, Japan |
i ISPCS 2024 Slide 28




Scheme how to integrate Security o/ NetTimeLogic
AUTHENTICATION TLV for (CS)PTP?

e PTP foresees an AUTHENTICATION TLV for authentication of PTP
messages
 Authenticates the whole message (direct mode)

 AIll TCs must also recalculate the sighning because of altering frames

« Symmetric Key exchange is something to be done on a CPU
« E.g.on a softcore CPU
 [tisimportant that no table is required on a per client base (group keys)
 This can be added as add-on in a pipelined manner to the current
design

* [t must be assured that authentication and signing don'’t take longer
than the frame reception/transmission

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 29



Scheme how to integrate Security o/ NetTimeLogic
NTS?

« NTS is widely used for NTP in the public domain
 Especially for public Servers
 For closed environments like a Datacenter this might be overkill

« NTS for CSPTP does not exist yet
 This could potentially be added to CSPTP as option

o Still stateless scheme for Server

* NTS is based on a trusted common Key Establishment Server for
initial Key establishment and cookies

 This could be done on a CPU, since it is basically used initially only
 |tis ok that this takes a while

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan l
T ISPCS 2024 Slide 30



Scheme how to integrate Security o/ NetTimeLogic
NTS?

« Cookies in the Client Request can be authenticated by the Server
and the Cookies in the Server Response can be authenticated on
the Client

* |t must be assured that authentication can be done pipelined and will
not take longer than a frame reception

* [t must be assured that signing can be done pipelined and will not take
longer than a frame transmission

« Response Cookie is based on the Request Cookie, Server Keys and
Nonce with AEAD Algorithm (AES)

« Cookie generation also needs to be pipelined and must not take longer
than the reception of a frame

<% |EEE

& ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 31



Scheme how to integrate Security o/ NetTimeLogic
NTS?

« Authentication and Signing can be pretty good pipelined in FPGASs
« However, pipelining is limited by the duration of a frame

« At some point pipeline steps need to do more per cycle which means
the resource usage goes up gquite badly

 Integration of NTS in the current concept (without KE) is possible
« Authentication can be done as a pipelined task as add-on
« Cookie creation can be done as a pipelined task as add-on
 Signing can be done as a pipelined task as add-on
« Key Exchange could be moved to a Soft-core CPU
 Either only the Key Exchange part
 Or also the KE-Server on the same CPU (as many NTP Servers do)

<% |EEE

& 2 ﬁ October 7-11, 2024 | Tokyo, Japan l
T ISPCS 2024 Slide 32



Scheme how to integrate Security o/ NetTimeLogic
NTP vs CSPTP

 Since the schemes are not necessary the same for NTP and CSPTP
it now made perfect sense to split the two designs to avoid to
complicate the design

<% |EEE

& ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 33



Conclusion o/ NetTimeLogic

A fully FPGA based NTP and CSPTP Server can achieve outstanding
high performance

« The performance to power to costs ratio is unbeatable
 IMio Requests with <3 Watts on an FPGA for <40%

 The fully FPGA based solution can scale quite easily to N-Mio
requests per second with reasonable effort and costs

« Security aspects can be handled very efficient on the FPGA due to
pipelining and full parallelism however authentication/signing uses
a lot of resources and Key Exchange (NTS-KE Server, PTP Key
exchange) are not useful to be built in FPGAs

<% |EEE

& ﬁ October 7-11, 2024 | Tokyo, Japan |
T ISPCS 2024 Slide 34



Questions? o/ NetTimeLogic

Thank you!

www.nhettimelogic.com
contact@nettimelogic.com

<% |EEE

& A October 7-11, 2024 | Tokyo, Japan
“# ISPCS 2074

Slide 35



	Folie 1: NTP and Client-Server PTP fully in Hardware
	Folie 2: Content
	Folie 3: Why NTP and CSPTP fully in Hardware? What is the problem we want to solve?
	Folie 4: Why NTP and CSPTP fully in Hardware? Why a Hardware/FPGA approach?
	Folie 5: Why NTP and CSPTP fully in Hardware? Why a Hardware/FPGA approach?
	Folie 6: Explanation of the Design  Requirements first
	Folie 7: Explanation of the Design  Requirements first
	Folie 8: Explanation of the Design  CSPTP
	Folie 9: Explanation of the Design  Design considerations
	Folie 10: Explanation of the Design  Design considerations
	Folie 11: Explanation of the Design  Key Modules and Functionalities
	Folie 16: Performance  Measurements
	Folie 17: Performance  Measurements NTP
	Folie 18: Performance  Measurements NTP
	Folie 19: Performance  Measurements CSPTP
	Folie 20: Performance  Measurements CSPTP
	Folie 21: Performance  Simulation
	Folie 22: Performance  Simulation
	Folie 23: Limitations  What is limiting the Performance?
	Folie 24: Scheme for higher Link Speeds How can this be applied to 10/25/100/400G Links
	Folie 25: Scheme for higher Request Rates How to go above 1Mio Request/s on higher Link Speeds
	Folie 26: Scheme for higher Request Rates How to go above 1Mio Request/s on higher Link Speeds
	Folie 27: Scheme for higher Request Rates How to go above 1Mio Request/s on higher Link Speeds
	Folie 28: Scheme for higher Request Rates How to go above 1Mio Request/s on higher Link Speeds
	Folie 29: Scheme how to integrate Security AUTHENTICATION TLV for (CS)PTP?
	Folie 30: Scheme how to integrate Security NTS?
	Folie 31: Scheme how to integrate Security NTS?
	Folie 32: Scheme how to integrate Security NTS?
	Folie 33: Scheme how to integrate Security NTP vs CSPTP
	Folie 34: Conclusion 
	Folie 35: Questions?

