

Whitepaper 1.0 Page 1 of 11

Lucky-Packet and Outlier Filters: a

way for increased synchronization

accuracy and resilience?

2. April 2025

In the last weeks we had again a look at how to make PTP (or synchronization pro-

tocols in general) more resilient and accurate.

Basically, we looked at two well-known mechanisms: The Lucky-Packet Filter and

the Outlier Filter. Both are well-known techniques to get better results from a noisy

measurement by analyzing larger numbers of measurements.

When it comes to PTP, these techniques are widely adapted especially in Telecom

networks. Why specifically Telecom Networks you may ask, there are still a lot of

brown field Telecom Networks, which are unfortunately not PTP aware. In these

non-PTP aware networks, PTP frames experience a high Packet Delay Variation

(PDV) due to the non-deterministic behavior of network equipment like switches

etc. which leads to bad synchronization accuracy if no special precautions have

been taken. This also because PTP was designed for engineered networks, where

Whitepaper 1.0 Page 2 of 11

all network equipment is PTP aware (PTP Boundary Clocks, PTP Transparent

Clocks).

To still get a pretty good synchronization over such jittery networks, additional fil-

tering is required and this brings us back to the Lucky-Packet and Outlier Filters.

But first we should have a look at a simplified explanation of the two filter con-

cepts:

Lucky-Packet Filter:

This filter basically looks for so called Lucky-Packets. Lucky-Packet are frames

which, when traveling through the network, experience the least delay (e.g. empty

queues on switches). Only Lucky-Packets shall be used for further processing, all

others shall be ignored. Since this is a rather rare situation which requires multiple

attempts to statistically have at least one Lucky-Packet within a given window

(which doesn’t mean that we always have a Lucky-Packet). Which brings us to the

most important configuration parameter of this filter: the window size. The window

size basically tells how many samples shall be searched for the one with the least

delay. It also defines the interval of how often corrections can be made. So, it is a

trade-off between reaction time and the chance for a Lucky-Packet.

Outlier Filter:

This filter checks for Outliers. If a value differs too much from the last values, it shall

be ignored. However, an Outlier Filter must also be able to adapt to sudden

changes so it not constantly ignores all new values. There are many different ap-

proaches for Outlier Filters but the basic concept is always the same: compare a

new vale to a certain threshold and if exceeded ignore the value. The approaches

basically differ on how this threshold is calculated and dynamically adapted.

Implementation and Measurements:

These Filters fit nicely into our concept of our FPGA IP cores, so we added them to

our IP cores. We added the Lucky Packet filter to our PTP Ordinary Clock IP core

(and CSPTP Client IP core) individually for Sync and DelayReq messages and the

Outlier Filter to our Adjustable Counter Clock IP core individually for drift and off-

set corrections.

As with all our IP cores we made pure FPGA implementations of these filters, opti-

mizing them for resource usage and performance (Statistics can use quite a lot of

BRAM in an FPGA) and thoroughly tested them with our Simulation framework.

https://www.nettimelogic.com/ptp-ordinary-clock.php
https://www.nettimelogic.com/clock-adjustable-clock.php

Whitepaper 1.0 Page 3 of 11

And of course, we wanted to verify its functionality and see the performance gains

not only in simulation but also in a real life scenario, so we created the following

simple but powerful test setup:

Test-Setup

Devices and Network Setup:

• 10/100/1000Mbit/s non-PTP aware Switch

• NetTimeLogic GNSS synced PTP Grandmaster Clock with 100Mbit/s link

• NetTimeLogic PTP Ordinary Clock with 100Mbit/s link

• NetTimeLogic PPS Analyzer

• Ostinato Traffic Generator

https://www.nettimelogic.com/shop.php#!/Hive-S-Grandmaster-Device/p/704238754/category=174100001
https://www.nettimelogic.com/shop.php#!/Hive-S-Time-Bridge/p/704238755/category=174100001
https://www.nettimelogic.com/tools-pps-analyzer.php
https://ostinato.org/

Whitepaper 1.0 Page 4 of 11

Load Generator via Ostinato from PC:

• 100 packets per burst

• 1400 bursts per second

• random frame sizes between 64 and 1518 bytes

• broadcast traffic (so the congestion happens in both directions)

• ~91Mbit/s injected on a 1000Mbit/s link (To make sure there will be conges-

tion in the switch for the 100Mbit connection between the PTP GM and PTP

Slave)

This load pattern will by purpose create quite randomized congestion on the

switch which will lead to high Packet Delay Variation (PDV).

PTP Configuration:

• Default Profile, Layer2

• E2E Delay Mechanism

• 128 Sync/DelayReq per Second

Filter & Servo Configuration:

• PI 1/16 Offset, PI 1/48 Drift (to smooth out things at least a bit but without in-

tegral part)

• In Sync Threshold 500ns

• Drift Threshold 50ns/s

• Offset Threshold 50ns

• Lucky Packet Window 128

The following 3 test scenarios were created:

1. No Filter

2. Lucky-Packet Filter

3. Lucky-Packet Filter combined with Outlier Filter

For comparison of the accuracy, the Pulse Per Second (PPS) of the two PTP de-

vices is used, since the calculated error on the Slave side is just a calculated error

and does not represent the actual error (as some other companies still try to tell

you) and might have a face offset which is not represented in the calculation etc.

PPS don't lie This is also the reason that on every PTP interoperability plugfest

PPS is used for accuracy comparison.

NetTimeLogic's PPS Analyzer is used to easily measure the deviation of the Slave's

PPS from the Master's PPS. It allows to monitor the offset over a very long time

(100k seconds and ~infinite if just logging) and shows its behavior over time (not

https://www.linkedin.com/company/ostinatotg/

Whitepaper 1.0 Page 5 of 11

like an oscilloscope where you don't know when each deviation was). It also di-

rectly shows the distribution of the deviation in a histogram which comes in handy

if you want to see if you have an offset and how narrow or wide spread your devia-

tions are.

Scenario 1: No Filter:

No Filter, 2000 samples, +/- 30us scale

No Filter, 2000 samples histogram +/- 30us scale

Observed Min/Max deviation on PPS: > +/-20us

Whitepaper 1.0 Page 6 of 11

Since there is still some filtering by the PI Servo Loop (which is the same for all

Scenarios) the Jitter experienced "only" resulted in deviations of ~+/-20us. The

packets actually experienced a PDV of up to hundreds of microseconds.

Scenario 2: Lucky Packet Filter:

Lucky-Packet Filter, 4000 samples, +/- 20us scale

Lucky-Packet Filter, 4000 samples histogram +/- 20us scale

Whitepaper 1.0 Page 7 of 11

Lucky-Packet Filter, 4000 samples, +/- 1us scale

Lucky-Packet Filter, 4000 samples histogram +/- 1us scale

Observed Min/Max deviation on PPS: < +/-1us

Whitepaper 1.0 Page 8 of 11

Scenario 3: Lucky Packet Filter & Outlier Filter:

Lucky-Packet & Outlier Filter, 4000 samples, +/- 20us scale

Lucky-Packet & Outlier Filter, 4000 samples histogram +/- 20us scale

Whitepaper 1.0 Page 9 of 11

Lucky-Packet & Outlier Filter, 4000 samples, +/- 1us scale

Lucky-Packet & Outlier Filter, 4000 samples histogram +/- 1us scale

Observed Min/Max deviation on PPS: +/-200ns

Locking at the results a pure Lucky-Packet filter has improved the accuracy by a

factor of more than 20 (from Scenario 1: >+/- 20us to Scenario 2: <+/-1us), which is

a great improvement in our point of view. However it also shows the weakness of a

pure Lucky-Packet filter which is the fact, that during some windows no Lucky-

Packet situation occurred so even the fastest packet experienced probably still

some congestion which lead to outlier adjustments. To handle exactly these

Whitepaper 1.0 Page 10 of 11

situations the Outlier Filter was enabled, which again improved the accuracy by a

factor of around 5 (from Scenario 2: >+/- 1us to Scenario 3: +/-200ns) which is

again a significant improvement and will satisfy already many applications which

require an accuracy better 1us.

So the overall improvement on the accuracy from the No-Filter (Scenario 1) to the

combined Lucky-Packet & Outlier Filter (Scenario 3) Scenario resulted in an aston-

ishing factor of 100!

And there is still quite some room for algorithmic improvement on the two filters

which could result in an even higher accuracy.

Since in the graphs above we only measured for 4000 samples (4000s = a bit

more than 1h) we decided to run a measurement for roughly a day to make sure we

don't have any outliers that were taken into account.

Lucky-Packet & Outlier Filter, ~1 day measurement, +/- 1us scale

We are very happy with the result. The observed Min/Max deviation on the PPS is

still in the +/-200ns range!

Now back to the title of the article! What do these filters have to do with resilience?

Combined they will find the best measurements from a number of measurements

and will ignore outliers. Even if you have a PTP aware network there could be some

sporadic wrong measurements which these filters basically get rid off, so the Slave

would not just follow such a potentially wrong measurement, which increases the

resilience of a PTP Slave by quite a lot.

Whitepaper 1.0 Page 11 of 11

The Lucky-Packet filter in this case can be seen as one type of Outlier filter (mostly

similar "small" delay, sporadic outlier "large" delay). And even if an actual outlier

passed the Lucky-Packet filter (e.g. calculations of the outlier resulted in the small-

est delay) the Outlier filter will detect and ignore it.

Conclusion:

For non-PTP aware Networks the combination of Lucky-Packet and Outlier Filter

will significantly improve the accuracy of synchronization (e.g. factor 100).

For PTP aware Networks the combination of Lucky-Packet and Outlier Filter will

significantly improve the resilience against erroneous measurements and outliers.

The Outlier Filter is not only useful for PTP but for basically any synchronization

mechanism to increase the resilience against any outliers.

There is always room for improvements on the algorithmic of these filters and also

combining them with an additional Max-Rate-Change limiter can improve the accu-

racy even more, but this is something for another article.

