

Whitepaper 1.0 Page 1 of 10

Full hardware high-performance Cli-

ent-Server PTP Prototype based on

FlashPTP

8. März 2024

Why all that?

In the last weeks we revisited the topic of Client-Server based PTP (CSPTP) since

there was again some buzz about this.

Currently there are three different Client-Server PTP solutions (or better proposals)

out there. All having the same basic concept in mind: a NTP like Client-Server

scheme with PTP messages to get on one hand hardware timestamping on the Cli-

ent and Server but more important to get timing support by the network and lastly

to allow much faster synchronization cycles than with NTP (e.g. 128/s). This will get

you the same precision as with normal PTP. The three solutions are:

• simplePTP defined by Meta

• FlashPTP defined by Meinberg

• Stateless PTP defined by Microchip.

Unfortunately they are completely incompatible with each other. The IEEE1588 WG

took this up and started standardization work in this direction to have one com-

mon Client-Server PTP (which is so far the voted name, short CSPTP) but the PAR

is not approved as of writing this post.

Whitepaper 1.0 Page 2 of 10

So, now you may ask, why not just using the standard Unicast scheme of PTP as

defined in IEEE1588? Well there are a couple of reasons:

1. IEEE1588 Unicast PTP is a stateful scheme which makes it already compli-

cated. CSPTP is stateless which makes it simple.

2. To get a Unicast Master to talk with a Unicast Slave many so called signaling

messages are used to register the Slave on the Master and the Master needs

to take track of this message registering which is complicated in the first

place and adds quite some overhead. CSPTP doesn't keep track of Clients,

the Server just responds to a Request sent by the Client.

3. Point number 2 is also a really dangerous attack vector: You can fake IPs,

MACs and ClockIDs on behalf of another device in the network and the Mas-

ter will start blasting PTP messages to it: huge amplification potential. For

CSPTP you have basically no amplification, for one Request you get one Re-

sponse (in best case of equal length).

4. For a Slave which just died or was disconnected the Master still sends PTP

messages for some time (until it gets no registration refresh). With CSPTP

on the other hand just no Request is sent anymore, so also no Response will

come.

5. The minimal number of PTP messages for a complete synchronization cycle

including information of the Master is 4 messages (not including the regis-

tering Signaling messages): Sync, DelayReq, DelayResp and Announce.

Where CSPTP in best case only would need two messages: Request and Re-

sponse (what message this shall be we discuss later).

6. Not intended for Routed Networks

So as you see there are some good reasons to go with the new Client-Server based

PTP approach.

FlashPTP vs simplePTP

Let's have a look into two of the published Client-Server PTP proposals (the ones

mostly adapted as far as I can tell):

• simplePTP: https://engineering.fb.com/2024/02/07/production-engineer-

ing/simple-precision-time-protocol-sptp-meta/

• FlashPTP: https://github.com/meinberg-sync/flashptpd

https://engineering.fb.com/2024/02/07/production-engineering/simple-precision-time-protocol-sptp-meta/
https://engineering.fb.com/2024/02/07/production-engineering/simple-precision-time-protocol-sptp-meta/
https://github.com/meinberg-sync/flashptpd

Whitepaper 1.0 Page 3 of 10

Under the links above you can find details regarding the two proposals. As men-

tioned, both have the same principal concept. The main difference is which mes-

sages are exchanged between the Client and the Server and how the timing infor-

mation is propagated between Client and Server.

Message exchange FlashPTP vs simplePTP

And this is where simplePTP took the wrong approach in our point of view. First of

all simple PTP requires always 3 messages where FlashPTP only requires 2 mes-

sages at best. Secondly simplePTP requires the Network to be One-Step capable

(which might be the case nowadays but not guaranteed), where FlashPTP uses the

standard IEEE1588 way of Sync and FollowUp which allows One- and Two-Step

operation by both the Client/Server and the Network. Thirdly, and this is probably

one of the most important points, simplePTP missuses the Announce message for

Timing information by filling the Timestamp and Correction fields which are not in-

tended for this and also causes invalid Sync messages.

To initiate a measurement simplePTP sends a DelayReq to the Server with the Pro-

fileSpecific flag set to distinguish between a standard IEEE1588 PTP DelayReq

(which might be an issue for PTP TCs which could potentially ignore the message

then). Since there will be no DelayResp the Network can not handle Two-Step. The

Server then responds with a Sync message where it puts the receive Timestamp of

the Delay Request T2. This is an invalid and missused Sync message since it does

not contain the transmit Timestamp T3 (and potentially has the Two-Step flag not

set, since no FollowUp will follow but an Announce message). Since no Follow-Up

Whitepaper 1.0 Page 4 of 10

will follow again the Network needs to be One-Step. Then the Server sends an An-

nounce message where it puts the Correction field of the DelayReq and the trans-

mit timestamp T3 into the corresponding fields of the Announce message. This is

the second missused message since the CorrectionField of an Announce is sup-

posed to be 0 and the Timestamp field of the Announce shall contain an estimate

of the transmit Timestamp of the announce or 0. From the mechanism of 1 Request

by the Client leads to 2 Responses by the Server you have an amplification factor

of 2 which could again be a security issue.

FlashPTP on the other hand makes use of the standard IEEE1588 mechanism of

Type-Length-Value (TLV) fields appended to PTP messages. To initiate a measure-

ment the Client sends a Sync to the Server appends a Request TLV to the Sync

(One-Step) or FollowUp (Two-Step) which allows the Server to distinguish be-

tween a Sync sent by an IEEE1588 PTP Master or a FlashPTP Client, but in any case

this Sync message is a valid Sync/Follow-Up message just not from a Master but a

Client. The Server then responds to the Request Sync message with a Response

Sync message containing the Timestamp T3 (One-Step) where it puts the receive

Timestamp T2 into a Response TLV together with the summed Correction field of

the Sync/Follow-Up from the Request and additional information of the Server (ba-

sically the Information which is contained in an Announce) if the Client requested

this additional Information. If the Server is Two-Step, the Response Sync is a com-

pletely normal Sync message and the TLV will be appended to the Follow-Up

(same as for the Request Sync). Again the Sync/Follow-Up is completely valid just

with an additional TLV and just not from a Master but the Server. The TLV lengths

are also set so no amplification can happen aka Requests and Response Messages

have the same length. If the Server is One-Step capable there will never be an am-

plification in case it is Two-Step the same amplification of 2 Responses per 1 Re-

quest as with simplePTP exists..

As you can see the FlashPTP approach is much cleaner than simplePTP when it

comes to the intended use of IEEE1588 PTP messages and mechanisms and has

less expectations on the Network (One-Step or Two-Step) and in best case uses

one message less than simplePTP which will be the case where no amplification

vector exists.

All these advantages of FlashPTP over simplePTP as well as the first documents

published by the IEEE1588 WG (CSPTP will most probably and hopefully be much

closer to FlashPTP than simplePTP!) made us confident enough to implement a full

Whitepaper 1.0 Page 5 of 10

hardware based (FPGA) Client and Server compatible with the FlashPTP proposal

from Meinberg. Basically as preparation for the Upcoming IEEE Standard and proof

of concept (and to show that we can just do it)

On that note we would like to thank Thomas Behn and Meinberg for preparing the

proposal and publishing the Open Source Software Client and Server implementa-

tions of FlashPTP.

PTP Client and Server Prototype based on FlashPTP

End of February 2024 we started the implementation of our FlashPTP Client and

Server. And two weeks and a lot of Coffee later we now have our first proto-

types of the full FPGA based FlashPTP Server and Client ready.

As with all our IP cores, the performance of our solutions is outstanding and often

unmatched and our FlashPTP cores are no exception. Why am I mentioning this?

Well as with standard IEEE Unicast PTP or NTP the performance of the Server de-

fines how many Clients you can handle and at what Request rates. Our FlashPTP

Server can handle Client Requests at line speed on a Gigabit Ethernet link which

equals to around one Million Requests per Second (same as our NTP Server). This

is outstanding in itself but especially if you consider that the whole Server does pull

only about 3-4 Watts (go green)! This should have you covered even for a

pretty large Network. And of course it does everything with One-Step messages,

so we are really down to the two message exchange with no amplification vector.

Since we always put the highest efforts into interoperability we directly tested our

FlashPTP implementations against the Open Source Reference implementation

provided by Meinberg and guess what: It just worked! (well after about 1h of strug-

gling with some fields in the PTP messages and getting the Software versions cor-

rectly configured (thanks again to Thomas Behn for the support there)! I think this

is a huge step forward into standardizing a Client-Server based PTP approach,

since it showed that FlashPTP can be implemented based on the IEEE1588-2019

standard and a simple TLV scheme attached to the messages by two completely

independent companies and two completely different technology approaches. The

FlashPTP specification is simple and just goes hand in hand with IEEE1588 without

compromising IEEE1588 in any way.

https://www.linkedin.com/in/thomas-behn/
https://www.linkedin.com/company/meinberg-funkuhren-gmbh-&-co--kg/

Whitepaper 1.0 Page 6 of 10

Ok let's go back to our prototypes. We took two Digilent Arty-A7-100T Develop-

ment Boards (with AMD Artix7 FPGA) and ported our newly developed FlashPTP

Server and Client to it (which took less than an hour by the way, since our cores

are really easy to integrate and port and also to Altera, Lattice Semiconductor and

Microchip FPGAs). Then we extended our Universal Configuration Tool by a PTP

Client and PTP Server tab to easily configure and monitor our cores. Once all that

was done we put the Client and Server to the test with a simple setup as shown be-

low.

Testsetup

https://www.linkedin.com/company/digilent/
https://www.linkedin.com/company/amd/
https://www.linkedin.com/company/altera-fpga/
https://www.linkedin.com/company/lattice-semiconductor/
https://www.linkedin.com/company/supertex/

Whitepaper 1.0 Page 7 of 10

Both the PTP Server and the PTP Client put out a Pulse Per Second (PPS) based on

the local clock, which we used to measure the synchronization accuracy. As shown

below, the two PPS are within +/-20nswith each other over a test run of around 1h

(including all outliers, 100ns per division in the graphic) with a mean accuracy of

better +/-10ns.

PPS Accuracy +/-20ns

As mentioned earlier we have a tool called Universal Configuration Manager (UCM,

https://www.nettimelogic.com/tools-universal-configuration-manager.php) which

is used for configuration and supervision of the Server and Client. It basically allows

to read and write AXI Registers over an USB/UART interface and makes a graph-

ical representation of the registers.

On the Server Side you can configure the transport layer it shall use Layer2,

UDP/IPv4 or UDP/IPv6 and whether frames shall be VLAN tagged or not and of

course all PTP related configurations parameters like the Clock Identity and all

Quality and UTC parameters.

https://www.nettimelogic.com/tools-universal-configuration-manager.php

Whitepaper 1.0 Page 8 of 10

PTP Server Configuration

On the Client side you can configure again the transport Layer and VLAN and if IP

is used also the Subnetmask and a potential Gateway. In addition you need to con-

figure the Poll Interval for measurements and as a specialty of FlashPTP you can

also define how often a the Server Status is requested in addition (as part of the

same TLV, no additional message). This allow to minimize bandwidth usage since

you can synchronize e.g. 16 times per Second but only get the Server Status once

per Second. Even though FlashPTP is Stateless we have added a State indication to

show if the Client can synchronize to the Server or if it is unreachable or doesn't

Respond to Requests or if it is not within the desired accuracy, this is however

Whitepaper 1.0 Page 9 of 10

something we came up to give the User an easy indication if everything works fine.

Also there are frame counts which show how many requests were done and how

many Responses were received or missed. The most interesting part is however the

measured Path Delay and Calculated Offset (not what we adjust but the input to

the regulation)

PTP Client Configuration/Supervision

Summary

NetTimeLogic has up and running prototypes for both a PTP Client and a PTP

Server (with unmatched performance) based on FlashPTP fully implemented in an

FPGA (no CPU, no OS, no Drivers, no Software Stack) which is fully compatible

with the Open Source reference implementation from Meinberg. We choose Flash-

PTP over simplePTP for many reasons but mostly because we believe it will be the

base for the CSPTP which will be standardized by the IEEE1588 WG. We will adapt

our prototypes as soon as the standardization progresses. If you are interested in

integrating FlashPTP into your device contact us.

Update

We ported shortly (~15min) the PTP Client also to a Trenz Electronic GmbH C10LP

RefKit Development Board (with an Altera Cyclone 10 LP FPGA) just to show that

https://www.linkedin.com/company/trenz-electronic-gmbh/
https://www.linkedin.com/company/altera-fpga/

Whitepaper 1.0 Page 10 of 10

our IP Cores are all FPGA vendor independent. Performance wise it is identical to

the previous setup.

Testsetup with mixed FPGA vendors (AMD<=>Intel/Altera)

