

ClockFrequency Generator

Reference Manual

Product Info	
Product Manager	Sven Meier
Author(s)	Ioannis Sotiropoulos
Reviewer(s)	Thomas Schaub
Version	1.1
Date	16.04.2024

Copyright Notice

Copyright © 2024 NetTimeLogic GmbH, Switzerland. All rights reserved. Unauthorized duplication of this document, in whole or in part, by any means, is prohibited without the prior written permission of NetTimeLogic GmbH, Switzerland.

All referenced registered marks and trademarks are the property of their respective owners

Disclaimer

The information available to you in this document/code may contain errors and is subject to periods of interruption. While NetTimeLogic GmbH does its best to maintain the information it offers in the document/code, it cannot be held responsible for any errors, defects, lost profits, or other consequential damages arising from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-UCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-MENT/CODE.

Overview

NetTimeLogic's Frequency Generator is a full hardware (FPGA) only implementation of a Frequency Generator. It allows to generate a signal of configurable frequency and polarity aligned with the local clock. The Frequency Generator takes a frequency in Hertz as input and generates the signal accordingly. The settings can be configured either by signals or by an AXI4Lite-Slave Register interface. During synthesis time the duty cycle of the generated signal can be set as either a single pulse or 50%.

Key Features:

- Configurable frequency signal generation (0-16MHz)
- Configurable polarity
- Output delay compensation
- Alignment of the frequency generator to an input time
- Automatic realigning of the frequency generator on time jumps
- Continuous generation until disabled
- AXI4Lite register set or static configuration
- Generator resolution with 50 MHz system clock: 20ns
- Optional High Resolution Generation with 4ns resolution
- Optional DTC Generation with 1ns resolution

Revision History

This table shows the revision history of this document.

Version	Date	Revision
1.0	18.02.2023	First release
1.1	16.04.2024	Added DTC

Table 1:Revision History

Content

1	INTRODUCTION	8
1.1	Context Overview	8
1.2	Function	8
1.3	Architecture	9
2	FREQUENCY GENERATION BASICS	11
2.1	Digital Counter Clock	11
2.2	Drift and Offset adjustments	11
2.3	Frequency Generation	13
3	REGISTER SET	14
3.1	Register Overview	14
3.2 3.2.	Register Descriptions 1 General	15 15
4	DESIGN DESCRIPTION	23
4.1	Top Level - Clk FrequencyGenerator	23
4.2 4.2 4.2	Design Parts 1 Frequency Generator 2 Registerset	31 31 35
4.3 4.3 4.3	Configuration example 1 Static Configuration 2 AXI Configuration	38 38 38
4.4 4.4 4.4	-	39 39 39

5	RESOURCE USAGE	41
5.1	Intel/Altera (Cyclone 10)	41
5.2	AMD/Xilinx (Artix 7)	41
6	DELIVERY STRUCTURE	42
7	TESTBENCH	43
7.1	Run Testbench	43
8	REFERENCE DESIGNS	45
8.1	Intel/Altera: Cyclone 10 LP RefKit	45
8.2	AMD/Xilinx: Digilent Arty	46
8.3	AMD/Xilinx: Vivado Version	47

Definitions

Definitions	
Counter Clock	A counter based clock that count in the period of its fre- quency in nanoseconds
PI Servo Loop	Proportional-Integral servo loop, allows for smooth correc- tions
Offset	Phase difference between clocks
Drift	Frequency difference between clocks

Table 2: Definitions

Abbreviations

Abbreviations	
AXI	AMBA4 Specification (Stream and Memory Mapped)
IRQ	Interrupt, Signaling to e.g. a CPU
PPS	Pulse Per Second
TS	Timestamp
DTC	Digital-to-Time Converted
CLK	Clock
СС	Counter Clock
ТВ	Testbench
LUT	Look Up Table
FF	Flip Flop
RAM	Random Access Memory
ROM	Read Only Memory
FPGA	Field Programmable Gate Array
VHDL	Hardware description Language for FPGA's

Table 3: Abbreviations

1 Introduction

1.1 Context Overview

The Frequency Generator is meant as a co-processor handling signal generation of configurable frequency.

It takes a (synchronized) time input as reference and generates the signal aligned with this clock (given the input frequency and polarity) compensating the output delay.

The Frequency Generator is designed to work in cooperation with the Counter Clock core from NetTimeLogic (not a requirement). It contains an AXI4Lite slave for configuration and status supervision from a CPU, this is however not required since the Frequency Generator can also be configured statically via signals/constants directly from the FPGA.

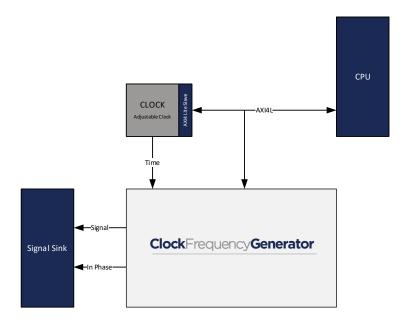


Figure 1: Context Block Diagram

1.2 Function

The Frequency Generator is a standalone core which generates a signal of configurable frequency aligned with a reference clock.

The frequency is provided in Hertz as input, along with the signal polarity and the cable delay of the output signal. When the Frequency Generator is enabled and the new input values are set, it registers the values and starts generating the signal of the configured frequency. At the beginning of the generation and until the begin-

ning of the new second of the reference clock, the generated signal will have aligned frequency to the input time, but it will be out of phase. The phase will be aligned when the next new second of the input timer clock is reached. When a time jump happens the frequency generation will continue with the previous phase, until the first new second is reached. Then, the phase will also realign to the new time. Due to a phase realignment, the frequency generator might truncate or extend the period of the last cycle before the realignment: the interval between two cycles during realignment should be no more than one and a half times the nominal period and no shorter than one half times the nominal period.

When a new cycle of the signal begins the pulse is asserted to the configured polarity. At synthesis time, the duty cycle of the signal can be set as either 50% or single pulse (i.e., asserted for one system clock period). At the end of the duty cycle, the signal is de-asserted to the inverse of the configured polarity. The frequency generation is repeated continuously, until the core is disabled via the register set.

At synthesis time, a high-resolution clock can be enabled. Then, the resolution of the generated frequency is below the period of the system clock (e.g. 4ns instead of 20ns, for a 50MHz system clock).

1.3 Architecture

The core is split up into different functional blocks for reduction of the complexity, modularity and maximum reuse of blocks. The interfaces between the functional blocks are kept as small as possible for easier understanding of the core.

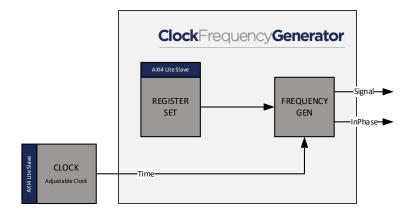


Figure 2: Architecture Block Diagram

Register Set

This block allows reading status values and writing configuration.

Frequency Generator

This block is the actual generator. It takes the reference time and creates the signal based on the configured frequency aligned with the clock.

2 Frequency Generation Basics

2.1 Digital Counter Clock

A digital counter clock is the most commonly used type of absolute time sources for digital systems. Its functionality is simple: every counter cycle it adds the period of the counter cycle to a counter. Optimally the counter period is an integer number which makes things easier. Normally such a counter clock is split into two counter parts, a sub seconds part and a seconds part, depending on the required resolution the sub second part is in nanoseconds, microseconds or milliseconds or even tens or hundreds of milliseconds. Once the sub seconds counter overflows e.g. 10^9 nanoseconds are reached, the seconds counter is incremented by one and the sub seconds counter is reset to the remainder if there is any.

The highest resolution can be achieved when the counter period is equal the clock period where the counter is run on, this is then normally a nanoseconds resolution, however with a quantization of the clock period.

Figure 3: shows a typical high resolution counter clock with nanosecond resolution and a counter period equal the clock period and a clock of 50MHz which equals to a 20ns clock period.

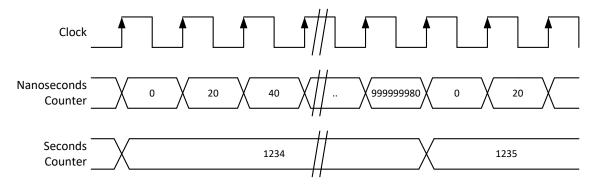


Figure 3: Counter Clock

2.2 Drift and Offset adjustments

When a digital counter clock shall be synchronized there are two things that have to be adjusted which is frequency differences aka drift and phase differences aka offset. Normally the phase difference is only considered the phase within a second. But for absolute time also the correct second is important.

Adjusting a counter clock in a simple way is to keep the clock frequency and adjust the counter increment. This has the advantages that it normally has a much higher resolution e.g. 1ns/s and it doesn't require or relies on external hardware. To adjust drift or offset additional nanoseconds are added or subtracted from the standard increment of the period.

E.g. for a 50 MHz counter clock an offset of +100 ns could be adjusted from one clock cycle to the next: $20 \Rightarrow 140 \Rightarrow 160 \Rightarrow ...$ (including 20 ns for the next clock cycle) or it could for example be spread over the next 100 clock cycles: $20 \Rightarrow 41 \Rightarrow 62 \Rightarrow 73 \Rightarrow ...$ which is a much smoother adjustment. The same applies to the drift which can also be set once in a period or evenly spread over time.

But why is a smooth adjustment important? If for example a PWM signal is generated from the counter clock then you don't want a time jump since the PWM would not be correct anymore, and this is exactly what would happen if the time is not corrected smoothly. The same applies for short time period measurements, these would measure wrong periods because of the adjustments.

However, it is not always possible to adjust the time smoothly, e.g. at startup of a system the clock has to be adjusted by thousands of seconds to get to the time of day (TAI start with second 0 at midnight 1.1.1970) or if the adjustment is larger than the possible adjustment in a given period. This cannot be done smoothly in a reasonable time, therefore the time is then set with a time jump.

Also important is that the clock doesn't count backwards during adjustments. Data acquisition and measurement applications require for example a strongly monolithically increasing time. This requirement basically limits the maximal adjustment so the clock is still counting. E.g. at 50 MHz a norm period is 20 ns, the maximum adjustment is therefore +/-19ns per clock period so the clock would still count with 1ns per clock period.

All these mechanisms are implemented in NetTimeLogic's Adjustable Counter Clock core.

When using the counter clock for signal timestamping or frequency generation the quantization fault is still the clock period but with an accurate nanosecond resolution.

2.3 Frequency Generation

For the frequency generation the following values are needed: the frequency in Hertz and the signal polarity. When generating a signal the output delay has to be taken into account. The frequency generator has to generate the output signal earlier to compensate for the output delay.

Also the frequency and therefore quantization of the clock is important. It in the end limits the resolution and therefore accuracy of the generated signal. To achieve higher precision, the frequency generator can fine-tune the assertion and deassertion of the generated signal by using a high-resolution clock that has a frequency of an integer multiple of the system clock and can also be combined with a DTC to achieve 1ns accuracy.

Figure 4: shows exactly the delay which is occurring when generating the signal. You can see that the internal signal is generated earlier so the first rising edge is exactly at the second's boundary. Also, the phase of the generated frequency is realigned at the arrival of the new second (by slightly truncating or extending the period of the last generated cycle).

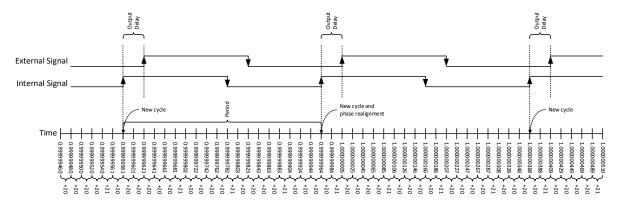


Figure 4: Frequency Generation

3 Register Set

This is the register set of the Frequency Generator. It is accessible via AXI4Lite Memory Mapped. All registers are 32bit wide, no burst access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Register addresses are only offsets in the memory area where the core is mapped in the AXI inter connects. Non existing register access in the mapped memory area is answered with a slave decoding error.

3.1 Register Overview

Registerset Overview										
Name	Description	Offset	Access							
Clk FgControl Reg	Clock Frequency generation Valid and Enabled Control Register	0x0000000	RW							
Clk FgStatus Reg	Clock Frequency generation Status Register	0x0000004	RW							
Clk FgPolarity Reg	Clock Frequency generation Polarity Register	0x0000008	RW							
Clk FgVersion Reg	Clock Frequency generation Version Register	0x000000C	RO							
Clk FgCableDelay Reg	Clock Frequency generation Cable Delay Register	0x0000020	RW							
Clk FgFrequency Reg	Clock Frequency generation Frequency value Register	0x0000030	RW							
Clk FgCyclesPerSecond Reg	Clock Frequency generation Cycles Per Second Register	0x0000034	RW							

3.2 Register Descriptions

3.2.1 General

3.2.1.1 CLK Frequency Generator Control Register

Used for general control over the Frequency Generator. Set flags are available to mark validity of the configuration.

Clk FgControl Reg									
Reg Description									
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10	9 8 7 6 5 4 3 2 1	0							
		ENABLE							
RO	RW F	RW							
Reset: 0x0000000									
Offset: 0x0000									

Name	Description	Bits	Access	
-	Reserved, read O	Bit:31:2	RO	
FREQUENCY_VAL	Frequency generation values valid	Bit: 1	RW	
ENABLE	Enable frequency generation	Bit: O	RW	

3.2.1.2 CLK Frequency Generator Status Register

Used for status supervision if the phase of the generated frequency is aligned to the input counter clock.

Clk	Fg	gSta	tus I	Reg																											
Reg	De	escrip	tion																												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											I												IN_PHASE_ERROR				ı			SKIP_PULSE	IN_PHASE
										R	0												RW				RO			RW	RW
													Re		0x0			0													
														Offs	set: C)x0C	04														

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:9	RO
IN_PHASE_ERROR	Sticky bit of in phase error until it is cleared by the master	Bit: 8	RW
-	Reserved, read 0	Bit:7:2	RO

SKIP_PULSE	In case of a time jump or a new second, the next gener- ated cycle might be skipped or extended, to avoid a toggling signal.	Bit: 1	RW
IN_PHASE	The frequency generation is in phase with the received time (e.g. from the Adjustable Clock). In case of time jump the generation will be out of phase to the counter clock until a new second.	Bit: O	RW

3.2.1.3 CLK Frequency Generator Polarity Register

Used for setting the signal output polarity, shall only be done when disabled. Default value is set by the OutputPolarity_Gen generic.

Clk	Clk FgPolarity Reg																														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													\succ																		
														RIT																	
														\triangleleft																	
														POI																	
														<u> </u>																	
RO RW													RW																		
Reset: 0x000000X																															
														С	offse	t: Ox(000	3													

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:1	RO
POLARITY	Signal Polarity (1 active high, 0 active low)	Bit: O	RW

3.2.1.4 CLK Frequency Generator Version Register

Version of the IP core, even though is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor and bits 15 down to 0 the build numbers.

CI	Clk FgVersion Reg																														
Re	Reg Description																														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ł																															
																Z															
																$\frac{0}{2}$															
																VERSION															
																\geq															
ĺ																															
																20															
													F			XXXX		Х													
l														Off	set:	0x0C)0C														

Name	Description	Bits	Access
VERSION	Version of the core	Bit: 31:0	RO

3.2.1.5 CLK Frequency Generator Cable Delay Register

This register allows to compensate for the propagation delay of the cable between the source and sink. To calculate the delay a rule of thumb says around 1ns per 15cm of cable.

Clk FgCableDelay Reg																															
Reg	Des	scrip	tion																												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																								\succ							
																								\triangleleft							
																								Ш							
								I.																							
																								Ш							
																								ЪВ							
																								Ö							
							R	0																RW							
													F	Reset	: OxC	000	0000	С													
															fset:																
														0.1																	

Name	Description	Bits	Access
-	Reserved, read O	Bit: 31:16	RO
CABLE_DELAY	Cable delay in nanoseconds (15cm is around 1ns)	Bit: 15:0	RW

3.2.1.6 CLK Frequency Generator Frequency Register

The frequency to be generated in Hertz. The range is [0-16,777,215] Hz

Clk FgFrequency Reg											
Reg Description											
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
	\sim										
	L L L L L L L L L L L L L L L L L L L										
'	⊃ Ø										
	Ш Ц										
	L.										
RO RW											
Reset: 0x0000000											
	Offset: 0x0030										

Name	Description	Bits	Access
-	Reserved, read O	Bit:31:24	RO
FREQUENCY	Value of the frequency to be generated	Bit: 23:0	RW

3.2.1.7 CLK Frequency Generator Cycles Per Second

The register provides the number of cycles generated by the core over the last second.

Clk FgCyclesPerSecond Reg											
Reg Description											
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
r	CYLCES_PER_SECOND										
RO	RW										
	Reset: 0x0000000										
	Offset: 0x0034										

Name	Description	Bits	Access
-	Reserved, read O	Bit:31:24	RO
FREQUENCY	Number of cycles generated over the last second	Bit: 23:0	RW

4 Design Description

The following chapters describe the internals of the Frequency Generator: starting with the Top Level, which is a collection of subcores, followed by the description of all subcores.

4.1 Top Level – Clk FrequencyGenerator

4.1.1.1 Parameters

The core must be parametrized at synthesis time. There are a couple of parameters which define the final behavior and resource usage of the core.

Name	Туре	Size	Description
ResetBuffer_Gen	boolean	1	If a reset buffer is used to provide reset synchronous to the system clock true = use reset buffer false = don't use reset buffer
StaticConfig_Gen	boolean	1	If Static Configuration or AXI is used: true = Static, false = AXI
ClockClkPeriod Nanosecond_Gen	natural	1	Clock Period in Nanosecond: Default for 50 MHz = 20 ns
CableDelay_Gen	boolean	1	If a cable delay shall be con- figurable (only needed when connected externally)
OutputDelay Nanosecond_Gen	natural	1	Output delay of the signal from the output signal to the connector.
OutputPolarity_Gen	boolean	1	Polarity of the generated signal true = high active, false = low active
OutputHalfPeriodDu- ty_Gen	boolean	1	Duty cycle of the generated signal. true=50% duty cycle false=single pulse duty cycle

			(i.e., one system clock period)
			If a high-resolution clock shall
HighResSupport_Gen	boolean	1	be used. If true, then the duty
			cycle of the generated signal
			is always 50%.
			The high-resolution clock
HighResFreqMulti-	Natural range [4-	1	frequency is a multiple of the
ply_Gen	10]	I	system clock's frequency.
			Default is 5.
DtcSupport_Gen	boolean	1	If DTC is supported
DtcCarryDelay	patural.	1	Delay of a Carry element
Femtosecond_Gen	natural	1	Delay of a Carry element
DtcOutputDelay		1	Delay from the Carry to the IO
Picoseconds_Gen	natural	1	Pin
			If the position of the DTC shall
DtcFixPosition_Gen	boolean	1	be fixed in the design (Xilinx
			only)
			DTC Start position Slice X
DtcXPosition_Gen	natural	1	position. Area is (X-1) - (X+1)
			DTC Start position Slice Y
DtcYPosition_Gen	natural	1	position. Area is (Y-1) -
			(Y+NrOfCarries)
AxiAddressRange	std logic voctor	32	AXI Base Address
Low_Gen	std_logic_vector	32	AAT Base Address
AxiAddressRange			AXI Base Address plus Regis-
	std_logic_vector	32	terset Size
High_Gen			Default plus 0xFFFF
			If in Testbench simulation
Sim Con	booloon	1	mode:
Sim_Gen	boolean	1	true = Simulation, false =
			Synthesis
	1	l	

Table 4: Parameters

4.1.1.2 Structured Types

4.1.1.2.1 Clk_Time_Type

Defined in Clk_Package.h of library ClkLib

Type represents the time used everywhere. For this type overloaded operators + and - with different parameters exist.

Field Name	Туре	Size	Description
Second	std_logic_vector	32	Seconds of time
Nanosecond	std_logic_vector	32	Nanoseconds of time
Fraction	std_logic_vector	2	Fraction numerator (mostly not used)
Sign	std_logic	1	Positive or negative time, 1 = negative, 0 = positive.
TimeJump	std_logic	1	Marks when the clock makes a time jump (mostly not used)

Table 5: Clk_Time_Type

4.1.1.2.2 Clk_FrequencyGeneratorStaticConfig_Type

Defined in Clk_FrequencyGeneratorAddrPackage.h of library ClkLib This is the type used for static configuration.

Field Name	Туре	Size	Description
Polarity	std_logic	1	'1' = high active, 'O' = low active
CableDelay	std_logic_vector	16	Cable Delay in Nanoseconds
Frequency	Std_logic_vector	24	Frequency to be generated in Hertz

 Table 6:
 Clk_FrequencyGeneratorStaticConfig_Type

4.1.1.2.3 Clk_FrequencyGeneratorStaticConfigVal_Type

Defined in Clk_FrequencyGeneratorAddrPackage.h of library ClkLib This is the type used for valid flags of the static configuration.

Field Name	Туре	Size	Description
Enable_Val	std_logic	1	Enables the generation
Frequency_Val	std_logic	1	Validates the values from the configuration

 Table 7:
 Clk_FrequencyGeneratorStaticConfigVal_Type

4.1.1.3 Entity Block Diagram

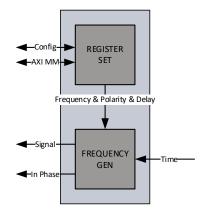


Figure 5: Frequency Generator

4.1.1.4 Entity Description

Frequency Generator

This module generates the signal with the configured frequency. Frequency generation is aligned with the reference time. It receives the configuration from the Registerset module.

Registerset

This module is an AXI4Lite Memory Mapped Slave. It provides access to all registers and allows to configure the Frequency Generator. It can be configured to either run in AXI or StaticConfig mode. If in StaticConfig mode, the configuration is done via signals and can be easily done from within the FPGA without a CPU. If in AXI mode, an AXI Master has to configure the signal pattern with AXI writes to the registers, which is typically done by a CPU.

4.1.1.5 Entity Declaration

Name	Dir	Туре	Size	Description	
Generics					
General					
ResetBuffer_Gen	-	boolean	1	If a reset buffer is used to provide reset synchronous to the system clock	
StaticConfig_Gen	_	boolean	1	If Static Configura- tion or AXI is used	
ClockClkPeriod Nanosecond_Gen	_	natural	1	Integer Clock Period	
CableDelay_Gen	_	boolean	1	If a cable delay shall be configurable (only needed when connected exter- naly)	
OutputDelay Nanosecond_Gen	-	natural	1	Output delay of the signal from the output signal to the connector	
OutputPolarity_Gen	-	boolean	1	True: High active, False: Low active	
OutputHalfPeriodDu- ty_Gen	-	boolean	1	Duty cycle of the generated signal	
HighResSupport_Gen	-	boolean	1	If a high-resolution clock shall be used. If true, then the duty cycle of the gener- ated signal is always 50%.	
HighResFreqMulti- ply_Gen	_	natural range [4-10]	1	The high-resolution clock frequency is a multiple of the	

				system clock's
				frequency. Default is
DtcSupport_Gen		boolean	1	5. If DTC is supported
DtcCarryDelay	-	DOOIEdT	1	Delay of a Carry
Femtosecond_Gen	-	natural	1	element
DtcOutputDelay Picoseconds_Gen	-	natural	1	Delay from the Carry to the IO Pin
DtcFixPosition_Gen	_	boolean	1	If the position of the DTC shall be fixed in the design (Xilinx only)
DtcXPosition_Gen	-	natural	1	DTC Start position Slice X position. Area is (X-1) - (X+1)
DtcYPosition_Gen	-	natural	1	DTC Start position Slice Y position. Area is (Y-1) - (Y+NrOfCarries)
AxiAddressRange Low_Gen	-	std_logic_vector	32	AXI Base Address
AxiAddressRange High_Gen	-	std_logic_vector	32	AXI Base Address plus Registerset Size
Sim_Gen	_	boolean	1	If in Testbench simulation mode
		Ports		
System SysClk_ClkIn	in	std_logic	1	System Clock
SysClkNx_ClkIn	in	std_logic	1	High Resolution Clock
SysRstN_RstIn	in	std_logic	1	System Reset
Config		Clk_FrequencyGener		Static Configuration
StaticConfig_DatIn	in	ator StaticConfig_Type	1	Static Comparation
StaticConfig_ValIn	in	Clk_FrequencyGener ator	1	Static Configuration valid

		StaticConfigVal _Type		
Time Input				
ClockTime_DatIn	in	Clk_Time_Type	1	Adjusted Clock Time
ClockTime_ValIn	in	std_logic	1	Adjusted Clock Time valid
AXI4 Lite Slave				
AxiWriteAddrValid _ValIn	in	std_logic	1	Write Address Valid
AxiWriteAddrReady _RdyOut	out	std_logic	1	Write Address Ready
AxiWriteAddrAddress _AdrIn	in	std_logic_vector	32	Write Address
AxiWriteAddrProt _DatIn	in	std_logic_vector	3	Write Address Protocol
AxiWriteDataValid _ValIn	in	std_logic	1	Write Data Valid
AxiWriteDataReady _RdyOut	out	std_logic	1	Write Data Ready
AxiWriteDataData _DatIn	in	std_logic_vector	32	Write Data
AxiWriteDataStrobe _DatIn	in	std_logic_vector	4	Write Data Strobe
AxiWriteRespValid _ValOut	out	std_logic	1	Write Response Valid
AxiWriteRespReady _RdyIn	in	std_logic	1	Write Response Ready
AxiWriteResp Response_DatOut	out	std_logic_vector	2	Write Response
AxiReadAddrValid _ValIn	in	std_logic	1	Read Address Valid
AxiReadAddrReady _RdyOut	out	std_logic	1	Read Address Ready
AxiReadAddrAddress _AdrIn	in	std_logic_vector	32	Read Address
AxiReadAddrProt _DatIn	in	std_logic_vector	3	Read Address Protocol
AxiReadDataValid _ValOut	out	std_logic	1	Read Data Valid
AxiReadDataReady _RdyIn	in	std_logic	1	Read Data Ready
AxiReadData Response_DatOut	out	std_logic_vector	2	Read Data
AxiReadDataData _DatOut	out	std_logic_vector	32	Read Data Re- sponse

In Phase Output				
InPhase_DatOut	out	std_logic	1	If '1', the frequency generator is in phase to the time input
Frequency Output				
FrequencyGenerator _EvtOut	out	std_logic	1	Output signal of the frequency genera- tion

Table 8:Frequency Generator

4.2 Design Parts

The Frequency Generator core consists of a couple of subcores. Each of the subcores itself consist again of smaller function block. The following chapters describe these subcores and their functionality.

4.2.1 Frequency Generator

4.2.1.1 Entity Block Diagram

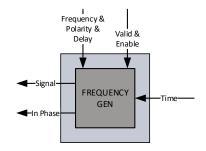


Figure 6: Frequency Generator

4.2.1.2 Entity Description

This module generates a signal with the configured frequency. When the Frequency Generator is enabled and the new input values are set, it registers the values and starts generating the signal of the configured frequency. At the beginning of the generation and until the beginning of the new second of the reference clock, the generated signal will have aligned frequency to the input time, but it will be out of phase. The phase will be aligned when the next new second of the input timer clock is reached. When a time jump happens the frequency generation will continue with the previous phase, until the first new second is reached. Then, the phase will also realign to the new time. Due to a phase realignment, the frequency generator might truncate or extend the period of the last cycle before the realignment: the interval between two cycles during realignment should be no more than one and a half times the nominal period and no shorter than one half times the nominal period.

When a new cycle of the signal begins the pulse is asserted to the configured polarity. At synthesis time, the duty cycle of the signal can be set as either 50% or single pulse (i.e., asserted for one system clock period). At the end of the duty cycle, the signal is de-asserted to the inverse of the configured polarity. The frequency generation is repeated continuously, until the core is disabled via the register set.

At synthesis time, a high-resolution clock can be enabled. Then, the resolution of the generated frequency is below the period of the system clock (e.g. 4ns instead of 20ns, for a 50MHz system clock).

4.2.1.3 Entity Declaration

Name	Dir	Туре	Size	Description
		Generics		
General				
ClockClkPeriod	_	natural	1	Integer Clock Period
Nanosecond_Gen			1	
				If a cable delay shall
				be configurable
CableDelay_Gen	-	boolean	1	(only needed when
				connected exter-
				naly)
				Output delay of the
OutputDelay				signal from the
Nanosecond_Gen	-	natural	1	output signal to the
				connector
				True: High active,
OutputPolarity_Gen	-	boolean	1	False: Low active
OutputHalfPeriodDu-				Duty cycle of the
ty_Gen	-	boolean	1	generated signal
				If a high-resolution
				clock shall be used.
				If true, then the duty
HighResSupport_Gen	-	boolean	1	
				cycle of the gener-
				ated signal is always
				50%.
				The high-resolution
				clock frequency is a
HighResFreqMulti-	-	natural range [4-10]	1	multiple of the
ply_Gen				system clock's
				frequency. Default is
				5.
DtcSupport_Gen	-	boolean	1	If DTC is supported
DtcCarryDelay	-	natural	1	Delay of a Carry

Femtosecond_Gen				element
DtcOutputDelay				Delay from the
Picoseconds_Gen	-	natural	1	Carry to the IO Pin
				If the position of the
				DTC shall be fixed in
DtcFixPosition_Gen	-	boolean	1	the design (Xilinx
				only)
				DTC Start position
DtcXPosition_Gen	-	natural	1	Slice X position.
_				Area is (X-1) - (X+1)
				DTC Start position
			1	Slice Y position.
DtcYPosition_Gen	-	natural	1	Area is (Y-1) -
				(Y+NrOfCarries)
Sim Con		boolean	1	If in Testbench
Sim_Gen	-	DOOIEdT	I	simulation mode
		Ports		
System				
SysClk_ClkIn	in	std_logic	1	System Clock
SysClkNx_ClkIn	in	std_logic	1	High Resolution
				Clock
			1	
SysRstN_RstIn	in	std_logic	1	System Reset
SysRstN_RstIn Time Input			1	System Reset Adjusted PTP Clock
	in in	std_logic Clk_Time_Type	1	
Time Input ClockTime_DatIn	in	Clk_Time_Type	1	Adjusted PTP Clock
Time Input			1 1 1	Adjusted PTP Clock Time
Time Input ClockTime_DatIn	in	Clk_Time_Type	1 1 1 1	Adjusted PTP Clock Time Adjusted PTP Clock Time valid
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input	in	Clk_Time_Type	1 1 1 1 1	Adjusted PTP Clock Time Adjusted PTP Clock Time valid Enable the Genera-
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input Enable_EnaIn	in in	Clk_Time_Type std_logic	1	Adjusted PTP Clock Time Adjusted PTP Clock Time valid
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input	in in	Clk_Time_Type std_logic std_logic	1 1 1 1	Adjusted PTP Clock Time Adjusted PTP Clock Time valid Enable the Genera- tor
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input Enable_EnaIn	in in	Clk_Time_Type std_logic	1	Adjusted PTP Clock Time Adjusted PTP Clock Time valid Enable the Genera-
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input Enable_EnaIn Error Output	in in in	Clk_Time_Type std_logic std_logic	1 1 1 1	Adjusted PTP Clock Time Adjusted PTP Clock Time valid Enable the Genera- tor Generator expected
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input Enable_EnaIn Error Output Generate_ErrOut Signal Values Input Frequen-	in in in out	Clk_Time_Type std_logic std_logic std_logic	1 1 1 1 1 1 1 1	Adjusted PTP Clock Time Adjusted PTP Clock Time valid Enable the Genera- tor Generator expected an error Frequency to be
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input Enable_EnaIn Error Output Generate_ErrOut Signal Values Input	in in in	Clk_Time_Type std_logic std_logic	1 1 1 1	Adjusted PTP Clock Time Adjusted PTP Clock Time valid Enable the Genera- tor Generator expected an error Frequency to be generated in Hertz
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input Enable_EnaIn Error Output Generate_ErrOut Signal Values Input Frequen- cyValue_DatIn FrequencyPolari-	in in in out	Clk_Time_Type std_logic std_logic std_logic std_logic_vector	1 1 1 1 1 1 1 1	Adjusted PTP Clock Time Adjusted PTP Clock Time valid Enable the Genera- tor Generator expected an error Frequency to be generated in Hertz '1': High active, 'O':
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input Enable_EnaIn Error Output Generate_ErrOut Signal Values Input Frequen- cyValue_DatIn FrequencyPolari- ty_DatIn	in in out in	Clk_Time_Type std_logic std_logic std_logic	1 1 1 1 24	Adjusted PTP Clock Time Adjusted PTP Clock Time valid Enable the Genera- tor Generator expected an error Frequency to be generated in Hertz '1': High active, '0': Low active
Time Input ClockTime_DatIn ClockTime_ValIn Enable Input Enable_EnaIn Error Output Generate_ErrOut Signal Values Input Frequen- cyValue_DatIn FrequencyPolari-	in in out in	Clk_Time_Type std_logic std_logic std_logic std_logic_vector	1 1 1 1 24	Adjusted PTP Clock Time Adjusted PTP Clock Time valid Enable the Genera- tor Generator expected an error Frequency to be generated in Hertz '1': High active, 'O':

				onds
Frequency_Valln	in	std_logic	1	Configuration values are valid
Generation Monitor Ou	tput			
InPhase_DatOut	out	std_logic	1	If '1', the frequency generator is in phase to the time input
CyclesOverSec- ond_DatOut	out	std_logic_vector	24	The number of cycles generated during the previous second
Generation- Skip_DatOut	out	std_logic	1	If '1', the frequency generator skipped part of the last cycle due to phase align- ment
Frequency Output			:	
FrequencyGenerator _EvtOut	out	std_logic	1	Output signal of the generated frequen- cy

Table 9:Frequency Generator

4.2.2 Registerset

4.2.2.1 Entity Block Diagram

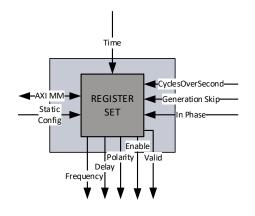


Figure 7: Registerset

4.2.2.2 Entity Description

Register Set

This module is an AXI4Lite Memory Mapped Slave. It provides access to the signal pattern registers and allows configuring the Frequency Generator. AXI4Lite only supports 32-bit wide data access, no byte enables, no burst, no simultaneous read and writes and no unaligned access. It can be configured to either run in AXI or StaticConfig mode. If in StaticConfig mode, the configuration of the signal pattern is done via signals and can be easily done from within the FPGA without CPU. For each parameter a valid signal is available, the enable signal shall be set last (or simultaneously). To change parameters the core has to be disabled and enabled again. If in AXI mode, an AXI Master has to configure the signal pattern with AXI writes to the registers, which is typically done by a CPU. Parameters can in this case also be changed at runtime.

4.2.2.3 Entity Declaration

Name	Dir	Туре	Size	Description	
Generics					
Register Set					
StatioConfig Con		haalaan	1	If Static Configura-	
StaticConfig_Gen	-	boolean	I	tion or AXI is used	
CableDelay_Gen	-	boolean	1	If a cable delay shall	

OutputPolarity_Gen AxiAddressRange Low_Gen	-	boolean std_logic_vector	1 32	be configurable (only needed when connected exter- naly) True: High active, False: Low active AXI Base Address
AxiAddressRange High_Gen	-	std_logic_vector	32	plus Registerset Size
		Ports		
System SysClk_ClkIn	in	std_logic	1	System Clock
SysRstN RstIn	in	std_logic	1	System Reset
Config				
StaticConfig_DatIn	in	Clk_FrequencyGener ator StaticConfig_Type	1	Static Configuration
StaticConfig_ValIn	in	Clk_FrequencyGener ator StaticConfigVal _Type	1	Static Configuration valid
AXI4 Lite Slave				Write Address Valid
AxiWriteAddrValid ValIn	in	std_logic	1	
AxiWriteAddrReady _RdyOut	out	std_logic	1	Write Address Ready
AxiWriteAddrAddress AdrIn	in	std_logic_vector	32	Write Address
AxiWriteAddrProt DatIn	in	std_logic_vector	3	Write Address Protocol
AxiWriteDataValid Valln	in	std_logic	1	Write Data Valid
AxiWriteDataReady _RdyOut	out	std_logic	1	Write Data Ready
AxiWriteDataData _DatIn	in	std_logic_vector	32	Write Data
AxiWriteDataStrobe	in	std_logic_vector	4	Write Data Strobe
AxiWriteRespValid ValOut	out	std_logic	1	Write Response Valid

	1	[1	
AxiWriteRespReady _RdyIn	in	std_logic	1	Write Response Ready
AxiWriteResp Response_DatOut	out	std_logic_vector	2	Write Response
AxiReadAddrValid _ValIn	in	std_logic	1	Read Address Valid
AxiReadAddrReady _RdyOut	out	std_logic	1	Read Address Ready
AxiReadAddrAddress AdrIn	in	std_logic_vector	32	Read Address
AxiReadAddrProt _DatIn	in	std_logic_vector	3	Read Address Protocol
AxiReadDataValid _ValOut	out	std_logic	1	Read Data Valid
AxiReadDataReady _RdyIn	in	std_logic	1	Read Data Ready
AxiReadData Response_DatOut	out	std_logic_vector	2	Read Data
AxiReadDataData _DatOut	out	std_logic_vector	32	Read Data Re- sponse
Signal Values Output				
Frequen- cyValue_Datout	out	std_logic_vector	24	Frequency to be generated in Hertz
FrequencyPolari- ty_DatOut	out	std_logic	1	'1': High active, '0': Low active
FreqeuncyCableDelay _DatOut	out	std_logic_vector	16	Delay in Nanosec- onds
Frequency_ValOut	out	std_logic	1	Configuration values are valid
Generation Monitor Inp	ut			
InPhase_DatIn	in	std_logic	1	If '1', the frequency generator is in phase to the time input
CyclesOverSec- ond_DatIn	in	std_logic_vector	24	The number of cycles generated during the previous second
GenerationSkip_DatIn	in	std_logic	1	If '1', the frequency generator skipped part of the last cycle due to phase align-

				ment
Enable Output				
GenerateEnable _DatOut	out	std_logic	1	Enable Frequency Generator

Table 10: Registerset

4.3 Configuration example

In both cases the enabling of the core shall be done last, after or together with the configuration.

4.3.1 Static Configuration

```
constant ClkStaticConfigFrequencyGenerator_Con : Clk_FrequencyGeneratorStaticConfig_Type := (
    Polarity => '1',
    CableDelay => std_logic_vector(to_unsigned(20, 16)),
    Frequency => std_logic_vector(to_unsigned(72000, 24)) - 72kHz
);
constant ClkStaticConfigValFrequencyGenerator_Con : Clk_FrequencyGeneratorStaticConfigVal_Type
:= (
    Enable_Val => '1',
    Frequency_Val => '1'
```

```
);
```

Figure 8: Static Configuration

The signal generation pattern values can be changed while Signal_Val is set to 'O'.

4.3.2 AXI Configuration

The following code is a simplified pseudocode from the testbench: The base address of the Clock is 0x10000000.

```
-- CLK FREQUENCY GENERATOR
-- Polarity = 1
AXI WRITE 10000008 00000001
-- Write value of Frequency 10000 Hz
AXI AXIO WRITE 10000030 00002710
-- Write value of output cable delay 100 ns
AXI AXIO WRITE 10000020 00000064
-- Write values and enable FrequencyGenerator
AXI AXIO WRITE 1000000 00000003
```

Figure 9: AXI Configuration

The values should be set before enabling but can also be changed when enabled. The valid bit is self clearing, but will have immediate effect.

4.4 Clocking and Reset Concept

4.4.1 Clocking

To keep the design as robust and simple as possible, the Frequency Generator, as all other cores from NetTimeLogic, run in one main clock domain. This is considered to be the system clock. Per default this clock is 50MHz. Where possible also the interfaces are run synchronous to this clock. For clock domain crossing asynchronous fifos with gray counters or message patterns with metastability flip-flops are used. Clock domain crossings for the AXI interface is moved from the AXI slave to the AXI interconnect.

If the high resolution of the frequency generation is enabled, then an additional clock is used. Its frequency is multiple of the system clock frequency (set at synthesis time). To usage of this high-frequency clock is minimized, as it is used only to fine tune the assertion and deassertion of the generated signal. By default, the high-resolution clock is 5 times faster than system clock, which reduces the inaccuracy from 20 ns to 4ns (if the system clock is 50MHZ).

Clock	Frequency	Description
System		
System Clock	50MHz	System clock where the frequency
System Clock	(Default)	generation core runs on.
High Rsolution		
High Resolution Clock	250MHz (Default)	High resolution clock for more accurate assertion/deassertion of the output signal
AXI Interface		
AXI Clock	50MHz	Internal AXI bus clock, same as the
	(Default)	system clock

Table 11: Clocks

4.4.2Reset

In connection with the clocks, there is a reset signal for each clock domain. All resets are active low. All resets can be asynchronously set and shall be synchronously released with the corresponding clock domain. All resets shall be asserted for the first couple (around 8) clock cycles. All resets shall be set simultaneously and released simultaneously to avoid overflow conditions in the core. See the reference designs top file for an example of how the reset shall be handled.

Reset	Polarity	Description
System		
System Reset	Active low	Asynchronous set, synchronous release
System Reset	Active low	with the system clock
AXI Interface		
		Asynchronous set, synchronous release
AXI Reset	Active low	with the AXI clock, which is the same as
		the system clock

Table 12: Resets

5 Resource Usage

Since the FPGA Architecture between vendors and FPGA families differ there is a split up into the two major FPGA vendors.

5.1 Intel/Altera (Cyclone 10)

Configuration	FFs	LUTs	BRAMs	DSPs
Minimal (Static Config, No HighResSupport, disable cable delay)	156	500	0	2
Maximal (AXI, HighResSupport, enable cable delay)	217	1228	0	2

Table 13:Resource Usage Intel/Altera

5.2 AMD/Xilinx (Artix 7)

Configuration	FFs	LUTs	BRAMs	DSPs
Minimal (Static Config, No HighResSupport, disable cable delay)	158	388	0	2
Maximal (AXI, HighResSupport, enable cable delay)	214	808	0	2

Table 14: Resource Usage AMD/Xilinx

6 Delivery Structure

AXI	AXI library folder
-Library	AXI library component sources
-Package	AXI library package sources
CLK	CLK library folder
-Core	CLK library cores
-Doc	CLK library cores documentations
-Driver	CLK library driver
-Library	CLK library component sources
-Package	CLK library package sources
-Refdesign	CLK library cores reference designs
-Testbench	CLK library cores testbench sources and sim/log
COMMON	COMMON library folder
COMMON -Library	COMMON library folder COMMON library component sources
	-
-Library	COMMON library component sources
-Library	COMMON library component sources
-Library -Package	COMMON library component sources COMMON library package sources
-Library -Package PPS	COMMON library component sources COMMON library package sources PPS library folder
-Library -Package PPS	COMMON library component sources COMMON library package sources PPS library folder
-Library -Package PPS -Package	COMMON library component sources COMMON library package sources PPS library folder PPS library package sources
-Library -Package PPS -Package SIM	COMMON library component sources COMMON library package sources PPS library folder PPS library package sources SIM library folder
-Library -Package PPS -Package SIM -Doc	COMMON library component sources COMMON library package sources PPS library folder PPS library package sources SIM library folder SIM library command documentation
-Library -Package PPS -Package SIM -Doc -Package	 COMMON library component sources COMMON library package sources PPS library folder PPS library package sources SIM library folder SIM library command documentation SIM library package sources

7 Testbench

The Frequency Generator testbench consist of 3 parse/port types: AXI, CLK and SIG.

The Signal Input Port is checking the generated output with the same clock reference from the Clock Port as the Frequency Generator

For configuration and result checks an AXI read and write port is used.

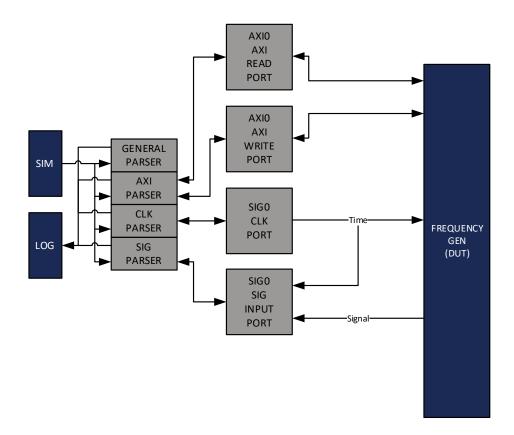


Figure 10: Testbench Framework

For more information on the testbench framework check the Sim_ReferenceManual documentation.

With the Sim parameter set the time base for timeouts are divided by 1000 to speed up simulation time.

7.1 Run Testbench

1. Run the general script first

```
source XXX/SIM/Tools/source_with_args.tcl
```


2. Start the testbench with all test cases

src XXX/CLK/Testbench/Core/ClkFrequencyGenerator/Script/run_Clk_FrequencyGenerator_Tb.tcl

 Check the log file LogFile1.txt at the XXX/CLK/Testbench/Core/ClkFrequencyGenerator/Log/ folder for simulation results.

8 Reference Designs

The Frequency Generator reference design contains a PLL to generate all necessary clocks (cores are run at 50 MHz) and an instance of the Frequency Generator IP core and an instance of the Adjustable Counter Clock IP core (needs to be purchased separately). Optionally it also contains an instance of a PPS Master Clock IP core (has to be purchased separately). To instantiate the optional IP core, change the corresponding generic (PpsMasterAvailable_Gen) to true via the tool specific wizards.

The Reference Design is intended to run just standalone, show the instantiation and generate a signal output. The PPS Master Clock is used to create a PPS output which is compensated for the output delay and has a configurable duty cycle, if not available an uncompensated PPS is directly generated out of the MSB of the Time. All generics can be adapted to the specific needs.

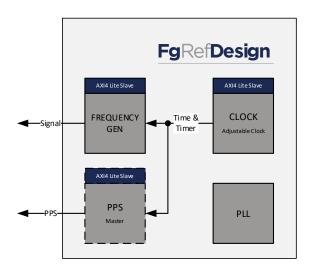


Figure 11: Reference Design

8.1 Intel/Altera: Cyclone 10 LP RefKit

The Cyclone 10 LP RefKit 10CL055 Development Board is an FPGA board from Arrow Electronics and Trenz Electronic GmbH with a Cyclone 10 FPGA from Intel/Altera. (<u>https://shop.trenz-electronic.de/en/TEI0009-02-055-8CA-Cyclone-10-</u> LP-RefKit-10CL055-Development-Board-32-MByte-SDRAM-16-MByte-Flash)

- 1. Open Quartus 18.x
- 2. Open Project /CLK/Refdesign/Altera/C10LpRefKit /ClkFrequencyGenerator /ClkFrequencyGenerator.qpf

- 3. If the optional core PPS Master Clock is available add the files from the corresponding folders (PPS/Core, PPS/Library and PPS/Package)
- 4. Change the generics (PpsMasterAvailable_Gen) in Quartus (in the settings menu, not in VHDL) to true for the optional cores that are available.
- 5. Rerun implementation
- 6. Download to FPGA via JTAG

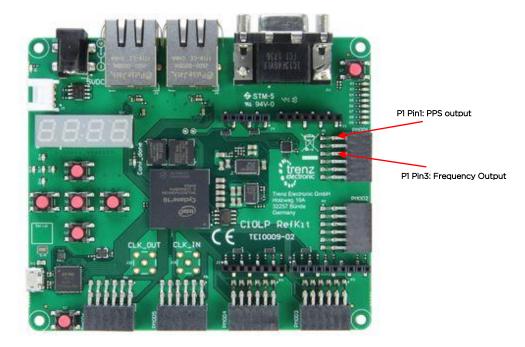


Figure 12: Cyclone 10 LP RefKit (source Trenz Electronic GmbH)

8.2 AMD/Xilinx: Digilent Arty

The Arty board is an FPGA board from Digilent Inc. with an Artix7 FPGA from AMD/Xilinx. (<u>http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/</u>

- 1. Open Vivado 2019.1.
- 2. Note: If a different Vivado version is used, see chapter 8.3.
- 3. Run TCL script
 - /CLK/Refdesign/Xilinx/Arty/ClkSignalGenerator/ClkSignalGenerator.tcl
 - a. This has to be run only the first time and will create a new Vivado Project
- 4. If the project has been created before open the project and do not rerun the project TCL

- 5. If the optional core PPS Master Clock is available add the files from the corresponding folders (PPS/Core, PPS/Library and PPS/Package) to the corresponding Library (PpsLib).
- 6. Change the generics (PpsMasterAvailable_Gen) in Vivado (in the settings menu, not in VHDL) to true for the optional cores that are available.
- 7. Rerun implementation
- 8. Download to FPGA via JTAG

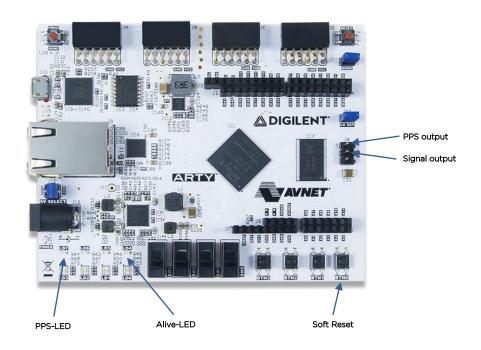


Figure 13: Arty (source Digilent Inc)

8.3 AMD/Xilinx: Vivado Version

The provided TCL script for creation of the reference-design project is targeting AMD/Xilinx Vivado 2019.1.

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or higher.

If a higher Vivado version is used, the following steps are recommended:

- Before executing the project creation TCL script, the script's references of Vivado 2019 should be manually replaced to the current Vivado version. For example, if version Vivado 2022 is used, then:
 - The statement occurrences:

set_property flow "Vivado Synthesis 2019" \$obj

shall be replaced by:

set_property flow "Vivado Synthesis 2022 \$obj

• The statement occurrences:

set_property flow "Vivado Implementation 2019" \$obj
shall be replaced by:

set_property flow "Vivado Implementation 2022" \$obj

- After executing the project creation TCL script, the AMD/Xilinx IP cores, such as the Clocking Wizard core, might be locked and a version upgrade might be required. To do so:
 - 1. At "Reports" menu, select "Report IP Status".
 - 2. At the opened "IP Status" window, select "Upgrade Selected". The tool will upgrade the version of the selected IP cores.

A List of tables

Table 1:	Revision History	4
Table 2:	Definitions	7
Table 3:	Abbreviations	7
Table 4:	Parameters	24
Table 5:	Clk_Time_Type	25
Table 6:	Clk_FrequencyGeneratorStaticConfig_Type	25
Table 7:	Clk_FrequencyGeneratorStaticConfigVal_Type	26
Table 8:	Frequency Generator	30
Table 9:	Frequency Generator	34
Table 10:	Registerset	38
Table 11:	Clocks	39
Table 12:	Resets	40
Table 13:	Resource Usage Intel/Altera	41
Table 14:	Resource Usage AMD/Xilinx	41

B List of figures

Figure 1:	Context Block Diagram	8
Figure 2:	Architecture Block Diagram	9
Figure 3:	Counter Clock	11
Figure 4:	Frequency Generation	
Figure 5:	Frequency Generator	
Figure 6:	Frequency Generator	
Figure 7:	Registerset	
Figure 8:	Static Configuration	
Figure 9:	AXI Configuration	
Figure 10:	Testbench Framework	
Figure 11:	Reference Design	
Figure 12:	Cyclone 10 LP RefKit (source Trenz Electronic GmbH)	
Figure 13:	Arty (source Digilent Inc)	