

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 1 of 50

ClockFrequency

GeneratorSine

Reference Manual

Product Info

Product Manager Sven Meier

Author(s) Sven Meier

Reviewer(s) Thomas Schaub

Version 0.2

Date 01.09.2025

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 2 of 50

Copyright Notice

Copyright © 2025 NetTimeLogic GmbH, Switzerland. All rights reserved.

Unauthorized duplication of this document, in whole or in part, by any means, is

prohibited without the prior written permission of NetTimeLogic GmbH, Switzer-

land.

All referenced registered marks and trademarks are the property of their respective

owners

Disclaimer

The information available to you in this document/code may contain errors and is

subject to periods of interruption. While NetTimeLogic GmbH does its best to

maintain the information it offers in the document/code, it cannot be held respon-

sible for any errors, defects, lost profits, or other consequential damages arising

from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-

UCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES

WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES,

INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-

ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE

HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO

EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY

DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS

DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS

PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION

THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-

MENT/CODE.

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 3 of 50

Overview

NetTimeLogic’s Frequency Generator is a full hardware (FPGA only) implementa-

tion of a Frequency Generator for Sine Waves via a DAC. It allows to generate a

signal of configurable frequency and polarity aligned with the local clock as a Sine

Wave. The Frequency Generator takes a frequency in Hertz as input and generates

the Since Wave samples, accordingly, based on a sampling frequency. The settings

can be configured either by signals or by an AXI4Lite-Slave Register interface.

During synthesis time the duty cycle of the generated signal can be set as either a

single pulse or 50%.

Key Features:

• Configurable frequency signal generation (1-200kHz (depends on DAC

sampling rate))

• Configurable polarity (positive or negative zero crossing and PPS boundary)

• Output delay compensation

• Alignment of the frequency generator to an input time (frequency and

phase)

• Automatic realigning of the frequency generator on time jumps and fre-

quency changes

• Continuous generation until disabled

• Configurable DAC Sample width

• Configurable DAC Sampling rate

• Optional DAC Sample scaling

• Optional DAC Sample offset

• SPI DAC Controller

• AXI4Lite register set or static configuration

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 4 of 50

Revision History

This table shows the revision history of this document.

Version Date Revision

0.1 27.08.2025 First draft

0.2 01.09.2024 Added mode to ignore phase

Table 1: Revision History

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 5 of 50

Content

1 INTRODUCTION 8

1.1 Context Overview 8

1.2 Function 8

1.3 Architecture 9

2 FREQUENCY GENERATION BASICS 11

2.1 Digital Counter Clock 11

2.2 Drift and Offset adjustments 11

2.3 Frequency Generation 13

2.4 Sine Wave Generation 14

3 REGISTER SET 15

3.1 Register Overview 15

3.2 Register Descriptions 16

3.2.1 General 16

4 DESIGN DESCRIPTION 24

4.1 Top Level – Clk FrequencyGeneratorSine 24

4.2 Design Parts 32

4.2.1 Frequency Generator 32

4.2.2 Registerset 36

4.3 Configuration example 39

4.3.1 Static Configuration 39

4.3.2 AXI Configuration 39

4.4 Clocking and Reset Concept 40

4.4.1 Clocking 40

4.4.2 Reset 41

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 6 of 50

5 RESOURCE USAGE 42

5.1 Intel/Altera (Cyclone 10) 42

5.2 AMD/Xilinx (Artix 7) 42

6 DELIVERY STRUCTURE 43

7 TESTBENCH 44

7.1 Run Testbench 44

8 REFERENCE DESIGNS 46

8.1 Intel/Altera: Cyclone 10 LP RefKit 46

8.2 AMD/Xilinx: Digilent Arty 47

8.3 AMD/Xilinx: Vivado Version 48

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 7 of 50

Definitions

Definitions

Counter Clock
A counter-based clock that counts in the period of its

frequency in nanoseconds

PI Servo Loop
Proportional–Integral servo loop, allows for smooth correc-

tions

Offset Phase difference between clocks

Drift Frequency difference between clocks

Table 2: Definitions

Abbreviations

Abbreviations

AXI AMBA4 Specification (Stream and Memory Mapped)

DAC Digital Analog Converter

IRQ Interrupt, Signaling to e.g. a CPU

PPS Pulse Per Second

TS Timestamp

CLK Clock

CC Counter Clock

TB Testbench

LUT Look Up Table

FF Flip Flop

PPS Pulser Per Second

RAM Random Access Memory

ROM Read Only Memory

FPGA Field Programmable Gate Array

VHDL Hardware description Language for FPGA’s

Table 3: Abbreviations

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 8 of 50

1 Introduction

1.1 Context Overview

The Frequency Generator is meant as a co-processor handling sine wave genera-

tion of configurable frequency.

It takes a (synchronized) time input as reference and generates a frequency

aligned with this clock (given the input frequency and polarity) compensating the

output delay and converting it to a sine wave sample with configurable sampling

rate .This sine wave sample shall then be written to a DAC, for this an optional SPI

DAC module exists.

The Frequency Generator is designed to work in cooperation with the Counter

Clock core from NetTimeLogic (not a requirement). It contains an AXI4Lite slave

for configuration and status supervision from a CPU, this is however not required

since the Frequency Generator can also be configured statically via sig-

nals/constants directly from the FPGA.

Sine

Signal Sink

CLOCK
Adjustable Clock

Time

A
X

I4
 L

it
e

Sl
av

e

CPU

AXI4L

ClockFrequencyGeneratorSine

In Phase

SPI
DAC

DAC
SPISignal

Scaling

Offset

Figure 1: Context Block Diagram

1.2 Function

The Frequency Generator is a standalone core which generates a sine wave of

configurable frequency aligned with a reference clock.

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 9 of 50

The frequency is provided in Hertz as input, along with the signal polarity and the

cable delay of the output signal. When the Frequency Generator is enabled and the

new input values are set, it registers the values and starts generating the signal of

the configured frequency. At the beginning of the generation and until the begin-

ning of the new second of the reference clock, the generated signal will have

aligned frequency to the input time, but it will be out of phase. The phase will be

aligned when the next new second of the input timer clock is reached. When a time

jump happens the frequency generation will continue with the previous phase, until

the first new second is reached. Then, the phase will also realign to the new time.

Due to a phase realignment, the frequency generator might corrupt the sine wave.

When a new cycle of the signal begins the pulse is asserted to the configured

polarity. At a configurable sampling interval, it calculates the angle of the sine wave

and uses a Cordic calculation to get the sine of the angle. This sine value is then

converted into a DAC sample which can be optionally scaled and offset. The fre-

quency generation is repeated continuously, until the core is disabled via the regis-

ter set.

In addition, there is a generic SPI DAC controller which allows to feed the sine wave

samples to a DAC.

.

1.3 Architecture

The core is split up into different functional blocks for reduction of the complexity,

modularity and maximum reuse of blocks. The interfaces between the functional

blocks are kept as small as possible for easier understanding of the core.

FREQUENCY
GEN

AXI4 Lite Slave

REGISTER
SET

ClockFrequencyGeneratorSine

CLOCK

Adjustable Clock
Time

A
X

I4
 L

it
e

 S
la

ve

Sine

InPhase

SPI
DAC

DAC
SPI

Scaling

Offset

Figure 2: Architecture Block Diagram

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 10 of 50

Register Set

This block allows reading status values and writing configuration.

Frequency Generator

This block is the actual generator. It takes the reference time and creates the sine

wave samples based on the configured frequency aligned with the clock.

SPI DAC

This block is a generic SPI controller which allows you to feed the samples to a

DAC via SPI. It is optional since a parallel DAC could also be used.

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 11 of 50

2 Frequency Generation Basics

2.1 Digital Counter Clock

A digital counter clock is the most used type of absolute time source for digital

systems. Its functionality is simple: every counter cycle it adds the period of the

counter cycle to a counter value. Optimally the counter period is an integer number

which makes things easier. Normally such a counter clock is split into two counter

parts, a sub second part and a second part, depending on the required resolution

the sub second part is in nanoseconds, microseconds or milliseconds or even tens

or hundreds of milliseconds. Once the sub seconds counter overflows e.g. 10^9

nanoseconds are reached, the seconds counter is incremented by one and the sub

seconds counter is reset to the remainder if there is any.

The highest resolution can be achieved when the counter period is equal the clock

period where the counter is run on, this is then normally a nanoseconds resolution,

however with a quantization of the clock period.

Figure 3: shows a typical high resolution counter clock with nanosecond resolution

and a counter period equal the clock period and a clock of 50MHz which equals to

a 20ns clock period.

0 20 40 999999980.. 0 20

1234 1235

Clock

Nanoseconds
Counter

Seconds
Counter

Figure 3: Counter Clock

2.2 Drift and Offset adjustments

When a digital counter clock shall be synchronized there are two things that have

to be adjusted which are frequency differences aka drift and phase differences aka

offset. Normally the phase difference is only considered the phase within a second.

But for absolute time also the correct second is important.

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 12 of 50

Adjusting a counter clock in a simple way is to keep the clock frequency and adjust

the counter increment. This has the advantage that it normally has a much higher

resolution e.g. 1ns/s and it does not require or relies on external hardware. To

adjust drift or offset additional nanoseconds are added or subtracted from the

standard increment of the period.

E.g. for a 50 MHz counter clock an offset of +100 ns could be adjusted from one

clock cycle to the next: 20 => 140=>160 => … (including 20 ns for the next clock

cycle) or it could for example be spread over the next 100 clock cycles: 20 => 41 =>

62 =>73 =>... which is a much smoother adjustment. The same applies to the drift

which can also be set once in a period or evenly spread over time.

But why is a smooth adjustment important? If for example a PWM signal is gener-

ated from the counter clock then you do not want a time jump since the PWM

would not be correct anymore, and this is exactly what would happen if the time

were not corrected smoothly. The same applies for short time period measure-

ments, these would measure wrong periods because of the adjustments.

However, it is not always possible to adjust the time smoothly, e.g. at startup of a

system the clock must be adjusted by thousands of seconds to get to the time of

day (TAI start with second 0 at midnight 1.1.1970) or if the adjustment is larger than

the possible adjustment in a given period. This cannot be done smoothly in a rea-

sonable time, therefore the time is then set with a time jump.

Also important is that the clock does not count backwards during adjustments.

Data acquisition and measurement applications require for example a strongly

monolithically increasing time. This requirement limits the maximal adjustment so

the clock is still counting. E.g. at 50 MHz a norm period is 20 ns, the maximum

adjustment is therefore +/-19ns per clock period so the clock would still count with

1ns per clock period.

All these mechanisms are implemented in NetTimeLogic’s Adjustable Counter

Clock core.

When using the counter clock for signal timestamping or frequency generation the

quantization fault is still the clock period but with an accurate nanosecond resolu-

tion.

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 13 of 50

2.3 Frequency Generation

For the frequency generation the following values are needed: the frequency in

Hertz and the signal polarity. When generating a signal, the output delay must be

considered. The frequency generator must generate the output signal earlier to

compensate for the output delay.

Also, the frequency and therefore quantization of the clock is important. It in the

end limits the resolution and therefore accuracy of the generated signal. To achieve

higher precision, the frequency generator can fine-tune the assertion and de-

assertion of the generated signal by using a high-resolution clock that has a fre-

quency of an integer multiple of the system clock and can also be combined with a

DTC to achieve 1ns accuracy.

Figure 4: shows exactly the delay which is occurring when generating the signal.

You can see that the internal signal is generated earlier so the first rising edge is

exactly at the second’s boundary. Also, the phase of the generated frequency is

realigned at the arrival of the new second (by slightly truncating or extending the

period of the last generated cycle).

1.0
000

00
005

1.0
000

00
025

1.0
000

00
045

1.0
000

00
065

1.0
000

00
085

1.0
000

00
106

1.0
000

00
207

1.0
000

00
227

1.0
000

00
126

1.0
000

00
146

1.0
000

00
166

1.0
000

00
186

1.0
000

00
247

1.0
000

00
267

1.0
000

00
287

1.0
000

00
308

1.0
000

00
328

1.0
000

00
348

1.0
000

00
368

1.0
000

00
388

1.0
000

00
409

1.0
000

00
429

1.0
000

00
449

1.0
000

00
469

1.0
000

00
489

1.0
000

00
510

0.9
999

99
48

0

0.9
999

99
50

0

0.9
999

99
52

0

0.9
999

99
54

0

0.9
999

99
56

1

0.9
999

99
58

1

0.9
999

99
601

0.9
999

99
621

0.9
999

99
641

0.9
999

99
984

0.9
999

99
964

0.9
999

99
944

0.9
999

99
904

0.9
999

99
883

0.9
999

99
863

0.9
999

99
823

0.9
999

99
803

0.9
999

99
924

0.9
999

99
843

0.9
999

99
782

0.9
999

99
762

0.9
999

99
722

0.9
999

99
802

0.9
999

99
742

0.9
999

99
681

0.9
999

99
661

+2
0

+2
0

+2
0

+2
0

+2
0

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
1

O
u

tp
ut

D

el
ay

New cycle
New cycle and
phase realignment

Time

External Signal

Internal Signal

New cycle

O
u

tp
ut

D

el
ay

O
u

tp
ut

D

el
ay

P
er

io
d

+2
0

0.9
999

99
46

0

Figure 4: Frequency Generation

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 14 of 50

2.4 Sine Wave Generation

For the sine wave generation, the intermediate angle of the frequency generation is

used. Between two rising edges the value range for the angle is 0-2π. There is an

integrator which divides the clock period into a range of 2π. For different frequen-

cies only the increment rate of the integrator matters since this will define the sine

wave level. In this core the CORDIC algorithm with 16 increments and 20bit preci-

sion for the angle is used to calculate the sine value (-1.0 - +1.0) out of an angle in

RAD. The sine value can then be converted into a DAC value which can be fed to a

DAC e.g. via SPI.

Figure 5: shows exactly the angle integration and the corresponding sine wave

Internal Signal

0

2π

0

2π2π

0

Angle

Sine 0

+1 +1

-1 -1

Figure 5: Sine Wave Generation

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 15 of 50

3 Register Set

This is the register set of the Frequency Generator. It is accessible via AXI4Lite Memory Mapped. All registers are 32bit wide, no

burst access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Register

addresses are only offsets in the memory area where the core is mapped in the AXI interconnects. Non existing register access in

the mapped memory area is answered with a slave decoding error.

3.1 Register Overview

Registerset Overview

Name Description Offset Access

Clk FgControl Reg Clock Frequency generation Valid and Enabled Control Register 0x00000000 RW

Clk FgStatus Reg Clock Frequency generation Status Register 0x00000004 RW

Clk FgPolarity Reg Clock Frequency generation Polarity Register 0x00000008 RW

Clk FgVersion Reg Clock Frequency generation Version Register 0x0000000C RO

Clk FgCableDelay Reg Clock Frequency generation Cable Delay Register 0x00000020 RW

Clk FgFrequency Reg Clock Frequency generation Frequency value Register 0x00000030 RW

Clk FgCyclesPerSecond Reg Clock Frequency generation Cycles Per Second Register 0x00000034 RW

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 16 of 50

3.2 Register Descriptions

3.2.1 General

3.2.1.1 CLK Frequency Generator Control Register

Used for general control over the Frequency Generator. Set flags are available to mark validity of the configuration.

Clk FgControl Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

IG
N

O
R

E
_

P
H

A
S

E

-

F
R

E
Q

U
E

N
C

Y
_

V
A

L

E
N

A
B

L
E

RO RW RO RW RW

Reset: 0x00000000

Offset: 0x0000

Name Description Bits Access

- Reserved, read 0 Bit:31:4 RO

IGNORE_PHASE No phase alignment Bit: 3 RW

- Reserved, read 0 Bit:2 RO

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 17 of 50

FREQUENCY_VAL Frequency generation values valid Bit: 1 RW

ENABLE Enable frequency generation Bit: 0 RW

3.2.1.2 CLK Frequency Generator Status Register

Used for status supervision if the phase of the generated frequency is aligned to the input counter clock.

Clk FgStatus Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

IN
_
P

H
A

S
E

_
E

R
R

O
R

-

S
K

IP
_

P
U

L
S

E

IN
_

P
H

A
S

E

RO RW RO RW RW

Reset: 0x00000000

Offset: 0x0004

Name Description Bits Access

- Reserved, read 0 Bit:31:9 RO

IN_PHASE_ERROR Sticky bit of in phase error until it is cleared by the
master

Bit: 8 RW

- Reserved, read 0 Bit:7:2 RO

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 18 of 50

SKIP_PULSE If a Waveform generation was skipped, currently Re-
served, read 0.

Bit: 1 RW

IN_PHASE The frequency generation is in phase with the received
time (e.g. from the Adjustable Clock). In case of time
jump the generation will be out of phase to the counter
clock until a new second.

Bit: 0 RW

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 19 of 50

3.2.1.3 CLK Frequency Generator Polarity Register

Used for setting the signal output polarity, shall only be done when disabled. Default value is set by the OutputPolarity_Gen gener-

ic.

Clk FgPolarity Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

P
O

L
A

R
IT

Y

RO RW

Reset: 0x0000000X

Offset: 0x0008

Name Description Bits Access

- Reserved, read 0 Bit:31:1 RO

POLARITY Signal Polarity (1 positive waveform, 0 negative waveform) Bit: 0 RW

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 20 of 50

3.2.1.4 CLK Frequency Generator Version Register

Version of the IP core, even though it is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor

and bits 15 down to 0 the build numbers.

Clk FgVersion Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V
E

R
S

IO
N

RO

Reset: 0xXXXXXXXX

Offset: 0x000C

Name Description Bits Access

VERSION Version of the core Bit: 31:0 RO

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 21 of 50

3.2.1.5 CLK Frequency Generator Cable Delay Register

This register allows to compensate for the propagation delay of the cable between the source and sink. To calculate the delay a

rule of thumb says around 1ns per 15cm of cable.

Clk FgCableDelay Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

C
A

B
L

E
_

D
E

L
A

Y

RO RW

Reset: 0x00000000

Offset: 0x0020

Name Description Bits Access

- Reserved, read 0 Bit: 31:16 RO

CABLE_DELAY Cable delay in nanoseconds (15cm is around 1ns) Bit: 15:0 RW

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 22 of 50

3.2.1.6 CLK Frequency Generator Frequency Register

The frequency to be generated in Hertz. The range is [0-16,777,215] Hz

Clk FgFrequency Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

F
R

E
Q

U
E

N
C

Y

RO RW

Reset: 0x00000000

Offset: 0x0030

Name Description Bits Access

- Reserved, read 0 Bit:31:24 RO

FREQUENCY Value of the frequency to be generated Bit: 23:0 RW

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 23 of 50

3.2.1.7 CLK Frequency Generator Cycles Per Second

The register provides the number of cycles generated by the core over the last second.

Clk FgCyclesPerSecond Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

C
Y

L
C

E
S

_
P

E
R

_
S

E
C

O
N

D

RO RW

Reset: 0x00000000

Offset: 0x0034

Name Description Bits Access

- Reserved, read 0 Bit:31:24 RO

FREQUENCY Number of cycles generated over the last second Bit: 23:0 RW

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 24 of 50

4 Design Description

The following chapters describe the internals of the Frequency Generator: starting

with the Top Level, which is a collection of subcores, followed by the description of

all subcores.

4.1 Top Level – Clk FrequencyGeneratorSine

4.1.1.1 Parameters

The core must be parametrized at synthesis time. There are a couple of parameters

which define the final behavior and resource usage of the core.

Name Type Size Description

ResetBuffer_Gen boolean 1

If a reset buffer is used to

provide reset synchronous to

the system clock

true = use reset buffer

false = do not use reset buffer

StaticConfig_Gen boolean 1

If Static Configuration or AXI

is used:

true = Static, false = AXI

ClockClkPeriod

Nanosecond_Gen
natural 1

Clock Period in Nanosecond:

Default for 50 MHz = 20 ns

CableDelay_Gen boolean 1

If a cable delay shall be con-

figurable (only needed when

connected externally)

OutputDelay

Nanosecond_Gen
natural 1

Output delay of the signal

from the output signal to the

connector.

OutputPolarity_Gen boolean 1

Polarity of the generated

signal

true = high active, false = low

active

ScalingSupport_Gen boolean 1 If the value shall be scaled

OffsetSupport_Gen boolean 1
If a DC Offset can be added,

Requires Scaling to be active

SampleFreqHz_Gen natural 1 Sample Frequency in Hz from

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 25 of 50

500kHz to 2MHz

Sample

DataWidth_Gen
natural 1

Sample Data Width 8 – 32bit

SampleSigned_Gen boolean 1

If the sample represents a

signed value or unsigned

value

AxiAddressRange

Low_Gen
std_logic_vector 32 AXI Base Address

AxiAddressRange

High_Gen
std_logic_vector 32

AXI Base Address plus Regis-

terset Size

Default plus 0xFFFF

Sim_Gen boolean 1

If in Testbench simulation

mode:

true = Simulation, false =

Synthesis

Table 4: Parameters

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 26 of 50

4.1.1.2 Structured Types

4.1.1.2.1 Clk_Time_Type

Defined in Clk_Package.h of library ClkLib

Type represents the time used everywhere. For this type overloaded operators +

and – with different parameters exist.

Field Name Type Size Description

Second std_logic_vector 32 Seconds of time

Nanosecond std_logic_vector 32 Nanoseconds of time

Fraction std_logic_vector 2
Fraction numerator (mostly

not used)

Sign std_logic 1
Positive or negative time, 1 =

negative, 0 = positive.

TimeJump std_logic 1
Marks when the clock makes a

time jump (mostly not used)

Table 5: Clk_Time_Type

4.1.1.2.2 Clk_FrequencyGeneratorStaticConfig_Type

Defined in Clk_FrequencyGeneratorAddrPackage.h of library ClkLib

This is the type used for static configuration.

Field Name Type Size Description

Polarity std_logic 1
‘1’ = high active, ‘0’ = low

active

EmbeddedPps std_logic 1
‘1’ = embedded PPS, ‘0’ = no

PPS (not used)

IgnorePhase std_logic 1
‘1’ = no Phase alignment, ‘0’ =

Phase Alignment with second

CableDelay std_logic_vector 16 Cable Delay in Nanoseconds

Frequency Std_logic_vector 24
Frequency to be generated in

Hertz

Table 6: Clk_FrequencyGeneratorStaticConfig_Type

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 27 of 50

4.1.1.2.3 Clk_FrequencyGeneratorStaticConfigVal_Type

Defined in Clk_FrequencyGeneratorAddrPackage.h of library ClkLib

This is the type used for valid flags of the static configuration.

Field Name Type Size Description

Enable_Val std_logic 1 Enables the generation

Frequency_Val std_logic 1
Validates the values from the

configuration

Table 7: Clk_FrequencyGeneratorStaticConfigVal_Type

4.1.1.3 Entity Block Diagram

REGISTER
SETAXI MM

Config

FREQUENCY
GEN

In Phase

Frequency & Polarity & Delay

TimeSine

Offset

Scaling

Figure 6: Frequency Generator

4.1.1.4 Entity Description

Frequency Generator

This module generates the signal with the configured frequency. Frequency gener-

ation is aligned with the reference time. It receives the configuration from the

Registerset module.

Registerset

This module is an AXI4Lite Memory Mapped Slave. It provides access to all regis-

ters and allows us to configure the Frequency Generator. It can be configured to

either run in AXI or StaticConfig mode. If in StaticConfig mode, the configuration is

done via signals and can be easily done from within the FPGA without a CPU. If in

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 28 of 50

AXI mode, an AXI Master must configure the signal pattern with AXI writes to the

registers, which is typically done by a CPU.

See 4.2.2 for more details.

4.1.1.5 Entity Declaration

Name Dir Type Size Description

Generics

General

ResetBuffer_Gen - boolean 1

If a reset buffer is

used to provide

reset synchronous

to the system clock

StaticConfig_Gen - boolean 1
If Static Configura-

tion or AXI is used

ClockClkPeriod

Nanosecond_Gen
- natural 1

Integer Clock Period

CableDelay_Gen - boolean 1

If a cable delay shall

be configurable

(only needed when

connected external-

ly)

OutputDelay

Nanosecond_Gen
- natural 1

Output delay of the

signal from the

output signal to the

connector

OutputPolarity_Gen - boolean 1
True: High active,

False: Low active

ScalingSupport_Gen - boolean 1
If the value shall be

scaled

OffsetSupport_Gen - boolean 1

If a DC Offset can

be added, Requires

Scaling to be active

SampleFreqHz_Gen - natural 1

Sample Frequency

in Hz from 500kHz

to 2MHz

Sample - natural 1 Sample Data Width

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 29 of 50

DataWidth_Gen 8 – 32bit

SampleSigned_Gen - boolean 1

If the sample repre-

sents a signed value

or unsigned value

AxiAddressRange

Low_Gen
- std_logic_vector 32

AXI Base Address

AxiAddressRange

High_Gen
- std_logic_vector 32

AXI Base Address

plus Registerset

Size

Sim_Gen - boolean 1
If in Testbench

simulation mode

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysClkNx_ClkIn in std_logic 1
High Resolution

Clock

SysRstN_RstIn in std_logic 1 System Reset

Config

StaticConfig_DatIn in

Clk_FrequencyGener

ator

StaticConfig_Type

1

Static Configuration

StaticConfig_ValIn in

Clk_FrequencyGener

ator

StaticConfigVal

_Type

1

Static Configuration

valid

Time Input

ClockTime_DatIn in Clk_Time_Type 1
Adjusted Clock

Time

ClockTime_ValIn in std_logic 1
Adjusted Clock

Time valid

Scaling Input

ScalingFactor_DatIn in std_logic_vector 9

Scaling as fractional

value 1Q8 1.0 =

0x100, 0.5 = 0x080

Offset Input

Offset
Percentage_DatIn

in std_logic_vector

DC offset in per-

centage of the

whole Sample

range: -100 to + 100

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 30 of 50

AXI4 Lite Slave
AxiWriteAddrValid
_ValIn

in std_logic 1 Write Address Valid

AxiWriteAddrReady
_RdyOut

out std_logic 1
Write Address

Ready

AxiWriteAddrAddress
_AdrIn

in std_logic_vector 32 Write Address

AxiWriteAddrProt
_DatIn

in std_logic_vector 3
Write Address

Protocol

AxiWriteDataValid
_ValIn

in std_logic 1 Write Data Valid

AxiWriteDataReady
_RdyOut

out std_logic 1 Write Data Ready

AxiWriteDataData
_DatIn

in std_logic_vector 32 Write Data

AxiWriteDataStrobe
_DatIn

in std_logic_vector 4 Write Data Strobe

AxiWriteRespValid
_ValOut

out std_logic 1
Write Response

Valid

AxiWriteRespReady
_RdyIn

in std_logic 1
Write Response

Ready

AxiWriteResp
Response_DatOut

out std_logic_vector 2 Write Response

AxiReadAddrValid
_ValIn

in std_logic 1 Read Address Valid

AxiReadAddrReady
_RdyOut

out std_logic 1
Read Address

Ready

AxiReadAddrAddress
_AdrIn

in std_logic_vector 32 Read Address

AxiReadAddrProt
_DatIn

in std_logic_vector 3
Read Address

Protocol

AxiReadDataValid
_ValOut

out std_logic 1 Read Data Valid

AxiReadDataReady
_RdyIn

in std_logic 1 Read Data Ready

AxiReadData
Response_DatOut

out std_logic_vector 2 Read Data

AxiReadDataData
_DatOut

out std_logic_vector 32
Read Data Re-

sponse

In Phase Output

InPhase_DatOut out std_logic 1

If ‘1’, the frequency

generator is in

phase to the time

input

Frequency Output

FrequencyGenera-
tor_DatOut

out std_logic_vector
Sample

Data

Width_

Since Wave sample

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 31 of 50

Gen for the DAC

FrequencyGenera-
tor_ValOut

out std_logic 1
Sine Wave sample

valid

Table 8: Frequency Generator

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 32 of 50

4.2 Design Parts

The Frequency Generator core consists of a couple of subcores. Each of the sub-

cores itself consists again of smaller function blocks. The following chapters de-

scribe these subcores and their functionality.

4.2.1 Frequency Generator

4.2.1.1 Entity Block Diagram

FREQUENCY
GEN

Signal

Frequency &
Polarity &

Delay

Time

Valid &
Enable

In Phase

OFFSET
ROM

Offset

CORDIC

Angle

Sine
Sample

Conv
Sine Offset

Scaling

Figure 7: Frequency Generator

4.2.1.2 Entity Description

Frequency Generator

This process generates a signal with the configured frequency. When the Frequen-

cy Generator is enabled and the new input values are set, it registers the values and

starts generating the signal of the configured frequency. At the beginning of the

generation and until the beginning of the new second of the reference clock, the

generated signal will have aligned frequency to the input time, but it will be out of

phase. The phase will be aligned when the next new second of the input timer

clock is reached. When a time jump happens the frequency generation will contin-

ue with the previous phase, until the first new second is reached. Then, the phase

will also realign to the new time. Due to a phase realignment, the sine wave might

be corrupted..

When a new cycle of the wave begins a pulse is asserted. This pulse will trigger the

calculation of a new angle value based on the integrator value (angle). After this

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 33 of 50

the sample frequency will define when the next angle value shall be calculated out

of the integrator value.

CORDIC

This module calculates the sine value of an angle in the format 0 -2π by using the

CORDIC algorithm with 16 iterations.

Offset ROM

This module stores the offsets in the sample format for each percentage so they

can be directly added by the sample converter.

Sample Converter

This process converts the sine value into a DAC sample that can be feed to a DAC

taking the data width and optional scaling and offsets correction into account.

4.2.1.3 Entity Declaration

Name Dir Type Size Description

Generics

General
ClockClkPeriod

Nanosecond_Gen
- natural 1

Integer Clock Period

CableDelay_Gen - boolean 1

If a cable delay shall

be configurable

(only needed when

connected external-

ly)

OutputDelay

Nanosecond_Gen
- natural 1

Output delay of the

signal from the

output signal to the

connector

OutputPolarity_Gen - boolean 1
True: High active,

False: Low active

ScalingSupport_Gen - boolean 1
If the value shall be

scaled

OffsetSupport_Gen - boolean 1

If a DC Offset can

be added, Requires

Scaling to be active

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 34 of 50

SampleFreqHz_Gen - natural 1

Sample Frequency

in Hz from 500kHz

to 2MHz

Sample

DataWidth_Gen
- natural 1

Sample Data Width

8 – 32bit

SampleSigned_Gen - boolean 1

If the sample repre-

sents a signed value

or unsigned value

Sim_Gen - boolean 1
If in Testbench

simulation mode

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysClkNx_ClkIn in std_logic 1
High Resolution

Clock

SysRstN_RstIn in std_logic 1 System Reset

Time Input

ClockTime_DatIn in Clk_Time_Type 1
Adjusted PTP Clock

Time

ClockTime_ValIn in std_logic 1
Adjusted PTP Clock

Time valid

Scaling Input

ScalingFactor_DatIn in std_logic_vector 9

Scaling as fractional

value 1Q8 1.0 =

0x100, 0.5 = 0x080

Offset Input

Offset
Percentage_DatIn

in std_logic_vector

DC offset in per-

centage of the

whole Sample

range: -100 to + 100

Enable Input

Enable_EnaIn in std_logic 1
Enable the Genera-

tor

Error Output

Generate_ErrOut out std_logic 1
Generator expected

an error

Signal Values Input

Frequen-
cyValue_DatIn

in std_logic_vector 24
Frequency to be

generated in Hertz

FrequencyPolari- in std_logic 1 ‘1’: High active, ‘0’:

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 35 of 50

ty_DatIn Low active

FreqeuncyCableDelay
_DatIn

in std_logic_vector 16
Delay in Nanosec-

onds

FrequencyIgnore
Phase_DatIn

in std_logic 1

‘1’ = no Phase align-

ment, ‘0’ = Phase

Alignment with

second

Frequency_ValIn in std_logic 1
Configuration values

are valid

Generation Monitor Output

InPhase_DatOut out std_logic 1

If ‘1’, the frequency

generator is in

phase to the time

input

CyclesOverSec-

ond_DatOut
out std_logic_vector 24

The number of

cycles generated

during the previous

second

Generation-

Skip_DatOut
out std_logic 1

If ‘1’, the frequency

generator skipped

part of the last cycle

due to phase align-

ment (unused right

now)

Frequency Output

FrequencyGenera-
tor_DatOut

out std_logic_vector

Sample

Data

Width_

Gen

Since Wave sample

for the DAC

FrequencyGenera-
tor_ValOut

out std_logic 1
Sine Wave sample

valid

Table 9: Frequency Generator

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 36 of 50

4.2.2 Registerset

4.2.2.1 Entity Block Diagram

REGISTER
SETStatic

Config

AXI MM

CyclesOverSecond

Frequency

Polarity Valid

In Phase

Delay

Time

Generation Skip

Enable

Figure 8: Registerset

4.2.2.2 Entity Description

Register Set

This module is an AXI4Lite Memory Mapped Slave. It provides access to the signal

pattern registers and allows configuring the Frequency Generator. AXI4Lite only

supports 32-bit wide data access, no byte enables, no burst, no simultaneous read

and writes and no unaligned access. It can be configured to either run in AXI or

StaticConfig mode. If in StaticConfig mode, the configuration of the signal pattern

is done via signals and can be easily done from within the FPGA without CPU. For

each parameter a valid signal is available, the enable signal shall be set last (or

simultaneously). To change parameters the core must be disabled and enabled

again. If in AXI mode, an AXI Master must configure the signal pattern with AXI

writes to the registers, which is typically done by a CPU. Parameters can in this

case also be changed at runtime.

4.2.2.3 Entity Declaration

Name Dir Type Size Description

Generics

Register Set

StaticConfig_Gen - boolean 1
If Static Configura-

tion or AXI is used

CableDelay_Gen - boolean 1 If a cable delay shall

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 37 of 50

be configurable

(only needed when

connected exter-

naly)

OutputPolarity_Gen - boolean 1
True: High active,

False: Low active

EmbeddedPps

Support_Gen
- boolean 1

Support to embed a

PPS into the Fre-

quency a duty cycle

modulation

AxiAddressRange

Low_Gen
- std_logic_vector 32

AXI Base Address

AxiAddressRange

High_Gen
- std_logic_vector 32

AXI Base Address

plus Registerset

Size

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysRstN_RstIn in std_logic 1 System Reset

Config

StaticConfig_DatIn in

Clk_FrequencyGener

ator

StaticConfig_Type

1

Static Configuration

StaticConfig_ValIn in

Clk_FrequencyGener

ator

StaticConfigVal

_Type

1

Static Configuration

valid

AXI4 Lite Slave
AxiWriteAddrValid
_ValIn

in std_logic 1 Write Address Valid

AxiWriteAddrReady
_RdyOut

out std_logic 1
Write Address

Ready

AxiWriteAddrAddress
_AdrIn

in std_logic_vector 32 Write Address

AxiWriteAddrProt
_DatIn

in std_logic_vector 3
Write Address

Protocol

AxiWriteDataValid
_ValIn

in std_logic 1 Write Data Valid

AxiWriteDataReady
_RdyOut

out std_logic 1 Write Data Ready

AxiWriteDataData
_DatIn

in std_logic_vector 32 Write Data

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 38 of 50

AxiWriteDataStrobe
_DatIn

in std_logic_vector 4 Write Data Strobe

AxiWriteRespValid
_ValOut

out std_logic 1
Write Response

Valid

AxiWriteRespReady
_RdyIn

in std_logic 1
Write Response

Ready

AxiWriteResp
Response_DatOut

out std_logic_vector 2 Write Response

AxiReadAddrValid
_ValIn

in std_logic 1 Read Address Valid

AxiReadAddrReady
_RdyOut

out std_logic 1
Read Address

Ready

AxiReadAddrAddress
_AdrIn

in std_logic_vector 32 Read Address

AxiReadAddrProt
_DatIn

in std_logic_vector 3
Read Address

Protocol

AxiReadDataValid
_ValOut

out std_logic 1 Read Data Valid

AxiReadDataReady
_RdyIn

in std_logic 1 Read Data Ready

AxiReadData
Response_DatOut

out std_logic_vector 2 Read Data

AxiReadDataData
_DatOut

out std_logic_vector 32
Read Data Re-

sponse

Signal Values Output

Frequen-
cyValue_Datout

out std_logic_vector 24
Frequency to be

generated in Hertz

FrequencyPolari-
ty_DatOut

out std_logic 1
‘1’: High active, ‘0’:

Low active

FreqeuncyCableDelay
_DatOut

out std_logic_vector 16
Delay in Nanosec-

onds

FrequencyIgnore
Phase_DatOut

out std_logic 1

‘1’ = no Phase align-

ment, ‘0’ = Phase

Alignment with

second

Frequency_ValOut out std_logic 1
Configuration values

are valid

Generation Monitor Input

InPhase_DatIn in std_logic 1

If ‘1’, the frequency

generator is in

phase to the time

input

CyclesOverSec- in std_logic_vector 24 The number of

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 39 of 50

ond_DatIn cycles generated

during the previous

second

GenerationSkip_DatIn in std_logic 1

If ‘1’, the frequency

generator skipped

part of the last cycle

due to phase align-

ment

Enable Output

GenerateEnable
_DatOut

out std_logic 1
Enable Frequency

Generator

Table 10: Registerset

4.3 Configuration example

In both cases the enabling of the core shall be done last, after or together with the

configuration.

4.3.1 Static Configuration

constant ClkStaticConfigFrequencyGenerator_Con : Clk_FrequencyGeneratorStaticConfig_Type := (

 Polarity => '1',

 CableDelay => std_logic_vector(to_unsigned(20, 16)),

 EmbeddedPps => '0', -- unused

 IgnorePhase => '0', -- phase aligned

 Frequency => std_logic_vector(to_unsigned(72000, 24)) – 72kHz

);

constant ClkStaticConfigValFrequencyGenerator_Con : Clk_FrequencyGeneratorStaticConfigVal_Type

:= (

 Enable_Val => '1',

 Frequency_Val => '1'

);

Figure 9: Static Configuration

The signal generation pattern values can be changed while Signal_Val is set to ‘0’.

4.3.2 AXI Configuration

The following code is a simplified pseudocode from the testbench: The base ad-

dress of the Clock is 0x10000000.

-- CLK FREQUENCY GENERATOR

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 40 of 50

-- Polarity = 1

AXI WRITE 10000008 00000001

-- Write value of Frequency 10000 Hz

AXI AXI0 WRITE 10000030 00002710

-- Write value of output cable delay 100 ns

AXI AXI0 WRITE 10000020 00000064

-- Write values and enable FrequencyGenerator and phase aligned

AXI AXI0 WRITE 10000000 00000003

Figure 10: AXI Configuration

The values should be set before enabling but can also be changed when enabled.

The valid bit is self-clearing but will have immediate effect.

4.4 Clocking and Reset Concept

4.4.1 Clocking

To keep the design as robust and simple as possible, the Frequency Generator, like

all other cores from NetTimeLogic, runs in one main clock domain. This is the

system clock. Per default this clock is 50MHz. Where possible also the interfaces

are run synchronous to this clock. For clock domain crossing asynchronous fifos

with gray counters or message patterns with metastability flip-flops are used. Clock

domain crossings for the AXI interface are moved from the AXI slave to the AXI

interconnect.

If a higher SPI clock rate is required (> ¼ System Clock) then an additional clock is

used. Its frequency shall be a multiple of the system clock frequency. By default,

the clock shall be 4-5 times faster than system clock and shall have a fixed relation-

ship (generated from the same

Clock Frequency Description

System

System Clock
50MHz

(Default)

System clock where the frequency

generation core runs on.

High Resolution

High Resolution Clock
250MHz

(Default)
SPI Module runs on a higher frequency

AXI Interface

AXI Clock
50MHz

(Default)

Internal AXI bus clock, same as the

system clock

Table 11: Clocks

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 41 of 50

4.4.2 Reset

In connection with the clocks, there is a reset signal for each clock domain. All

resets are active low. All resets can be asynchronously set and shall be synchro-

nously released with the corresponding clock domain. All resets shall be asserted

for the first couple (around 8) clock cycles. All resets shall be set simultaneously

and released simultaneously to avoid overflow conditions in the core. See the

reference designs top file for an example of how the reset shall be handled.

Reset Polarity Description

System

System Reset Active low
Asynchronous set, synchronous release

with the system clock

AXI Interface

AXI Reset Active low

Asynchronous set, synchronous release

with the AXI clock, which is the same as

the system clock

Table 12: Resets

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 42 of 50

5 Resource Usage

Since the FPGA Architecture between vendors and FPGA families differs there is a

split up into the two major FPGA vendors.

5.1 Intel/Altera (Cyclone 10)

Configuration FFs LUTs BRAMs DSPs

Minimal (Static Config, No scaling

and offset, disable cable delay, no

SPI)

490 1520 0 5

Maximal (AXI, scaling and offset,

cable delay, SPI)
670 1760 1 6

Table 13: Resource Usage Intel/Altera

5.2 AMD/Xilinx (Artix 7)

Configuration FFs LUTs BRAMs DSPs

Minimal

(Static Config, No HighResSupport,

disable cable delay)

395 1230 0 5

Maximal (AXI, HighResSupport,

enable cable delay)
570 1410 1 6

Table 14: Resource Usage AMD/Xilinx

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 43 of 50

6 Delivery Structure

AXI -- AXI library folder

 |-Library -- AXI library component sources

 |-Package -- AXI library package sources

CLK -- CLK library folder

 |-Core -- CLK library cores

 |-Doc -- CLK library cores documentations

 |-Driver -- CLK library driver

 |-Library -- CLK library component sources

 |-Package -- CLK library package sources

 |-Refdesign -- CLK library cores reference designs

 |-Testbench -- CLK library cores testbench sources and sim/log

COMMON -- COMMON library folder

 |-Library -- COMMON library component sources

 |-Package -- COMMON library package sources

PPS -- PPS library folder

|-Package -- PPS library package sources

SIM -- SIM library folder

 |-Doc -- SIM library command documentation

 |-Package -- SIM library package sources

 |-Testbench -- SIM library testbench template sources

 |-Tools -- SIM simulation tools

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 44 of 50

7 Testbench

The Frequency Generator testbench consists of 3 parse/port types: AXI, CLK and

SIG.

The Signal Input Port is checking the generated output with the same clock refer-

ence from the Clock Port as the Frequency Generator

For configuration and result checks an AXI read and write port is used.

AXI0
AXI

READ
PORT

SIG
PARSER

AXI
PARSER

CLK
PARSER

GPIO0
SIG

INPUT
PORT

Time

Sine

FREQUENCY
GEN SINE

(DUT)

AXI0
AXI

WRITE
PORT

CLK0
CLK

PORT

SIM

LOG

GENERAL
PARSER

Figure 11: Testbench Framework

For more information on the testbench framework check the Sim_ReferenceManual

documentation.

With the Sim parameter set the time base for timeouts are divided by 1000 to

speed up simulation time.

7.1 Run Testbench

1. Run the general script first

source XXX/SIM/Tools/source_with_args.tcl

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 45 of 50

2. Start the testbench with all test cases

src

XXX/CLK/Testbench/Core/ClkFrequencyGeneratorSine/Script/run_Clk_FrequencyGeneratorSine_Tb.tcl

3. Check the log file LogFile1.txt at the
XXX/CLK/Testbench/Core/ClkFrequencyGeneratorSine/Log/ folder for simula-
tion results.

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 46 of 50

8 Reference Designs

The Frequency Generator reference design contains a PLL to generate all neces-

sary clocks (cores run at 50 MHz and 200MHz) and an instance of the Frequency

Generator Sine IP core and an instance of the Adjustable Counter Clock IP core

(needs to be purchased separately). It also contains an SPI DAC interface to com-

municate with a PMOD DA2 DAC module. Optionally it also contains an instance of

a PPS Master Clock IP core (must be purchased separately). To instantiate the

optional IP core, change the corresponding generic (PpsMasterAvailable_Gen) to

true via the tool specific wizards.

The Reference Design is intended to run just standalone, show the instantiation and

generate a signal output. The PPS Master Clock is used to create a PPS output

which is compensated for the output delay and has a configurable duty cycle, if not

available an uncompensated PPS is directly generated out of the MSB of the Time.

All generics can be adapted to the specific needs.

FREQUENCY
GEN Sine

CLOCK
Adjustable Clock

PPS

AXI4 Lite Slave

Time &
Timer

FgSineRefDesign

PPS
Master

Sine

AXI4 Lite Slave

AXI4 Lite Slave

PLL

FREQUENCY
GEN Sine

SPI
PMOD

DA2
Wave

Figure 12: Reference Design

8.1 Intel/Altera: Cyclone 10 LP RefKit

The Cyclone 10 LP RefKit 10CL055 Development Board is an FPGA board from

Arrow Electronics and Trenz Electronic GmbH with a Cyclone 10 FPGA from In-

tel/Altera. (https://shop.trenz-electronic.de/en/TEI0009-02-055-8CA-Cyclone-10-

LP-RefKit-10CL055-Development-Board-32-MByte-SDRAM-16-MByte-Flash)

1. Open Quartus 18.x

https://shop.trenz-electronic.de/en/TEI0009-02-055-8CA-Cyclone-10-LP-RefKit-10CL055-Development-Board-32-MByte-SDRAM-16-MByte-Flash
https://shop.trenz-electronic.de/en/TEI0009-02-055-8CA-Cyclone-10-LP-RefKit-10CL055-Development-Board-32-MByte-SDRAM-16-MByte-Flash

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 47 of 50

2. Open Project /CLK/Refdesign/Altera/C10LpRefKit

/ClkFrequencyGeneratorSine/ClkFrequencyGeneratorSine.qpf

3. If the optional core PPS Master Clock is available add the files from the cor-

responding folders (PPS/Core, PPS/Library and PPS/Package)

4. Change the generics (PpsMasterAvailable_Gen) in Quartus (in the settings

menu, not in VHDL) to true for the optional cores that are available.

5. Rerun implementation

6. Download to FPGA via JTAG

Figure 13: Cyclone 10 LP RefKit (source Trenz Electronic GmbH)

8.2 AMD/Xilinx: Digilent Arty

The Arty board is an FPGA board from Digilent Inc. with an Artix7 FPGA from

AMD/Xilinx. (http://store.digilentinc.com/arty-board-artix-7-fpga-development-

board-for-makers-and-hobbyists/

1. Open Vivado 2019.1.

2. Note: If a different Vivado version is used, see chapter 8.3.

3. Run TCL script /CLK/Refdesign/Xilinx/Arty/ ClkFrequencyGeneratorSine/

ClkFrequencyGeneratorSine.tcl

a. This must be run only the first time and will create a new Vivado Pro-

ject

P1 Pin1: PPS output

PMOD DA2 (top row)

http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/
http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 48 of 50

4. If the project has been created before opening the project and do not rerun

the project TCL

5. If the optional core PPS Master Clock is available add the files from the cor-

responding folders (PPS/Core, PPS/Library and PPS/Package) to the corre-

sponding Library (PpsLib).

6. Change the generics (PpsMasterAvailable_Gen) in Vivado (in the settings

menu, not in VHDL) to true for the optional cores that are available.

7. Rerun implementation

8. Download to FPGA via JTAG

Figure 14: Arty (source Digilent Inc)

8.3 AMD/Xilinx: Vivado Version

The provided TCL script for creation of the reference-design project is targeting

AMD/Xilinx Vivado 2019.1.

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or

higher.

If a higher Vivado version is used, the following steps are recommended:

• Before executing the project creation TCL script, the script's references of

Vivado 2019 should be manually replaced with the current Vivado version.

For example, if version Vivado 2022 is used, then:

o The statement occurrences:

PPS-LED Alive-LED Soft Reset

PPS output

Signal output

PMOD DA2 (top row)

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 49 of 50

set_property flow "Vivado Synthesis 2019" $obj

shall be replaced by:

set_property flow "Vivado Synthesis 2022 $obj

o The statement occurrences:

set_property flow "Vivado Implementation 2019" $obj

shall be replaced by:

set_property flow "Vivado Implementation 2022" $obj

• After executing the project creation TCL script, the AMD/Xilinx IP cores,

such as the Clocking Wizard core, might be locked and a version upgrade

might be required. To do so:

1. At "Reports" menu, select "Report IP Status".

2. At the opened "IP Status" window, select "Upgrade Selected". The tool

will upgrade the version of the selected IP cores.

ClkFrequencyGeneratorSine Reference Manual 0.2 Page 50 of 50

A List of tables

Table 1: Revision History ..4

Table 2: Definitions .. 7

Table 3: Abbreviations .. 7

Table 4: Parameters ... 25

Table 5: Clk_Time_Type .. 26

Table 6: Clk_FrequencyGeneratorStaticConfig_Type ... 26

Table 7: Clk_FrequencyGeneratorStaticConfigVal_Type ... 27

Table 8: Frequency Generator... 31

Table 9: Frequency Generator.. 35

Table 10: Registerset ... 39

Table 11: Clocks .. 40

Table 12: Resets .. 41

Table 13: Resource Usage Intel/Altera ... 42

Table 14: Resource Usage AMD/Xilinx ... 42

B List of figures

Figure 1: Context Block Diagram .. 8

Figure 2: Architecture Block Diagram ... 9

Figure 3: Counter Clock ..11

Figure 4: Frequency Generation .. 13

Figure 5: Sine Wave Generation ... 14

Figure 6: Frequency Generator.. 27

Figure 7: Frequency Generator.. 32

Figure 8: Registerset ... 36

Figure 9: Static Configuration .. 39

Figure 10: AXI Configuration ... 40

Figure 11: Testbench Framework .. 44

Figure 12: Reference Design ... 46

Figure 13: Cyclone 10 LP RefKit (source Trenz Electronic GmbH) 47

Figure 14: Arty (source Digilent Inc) .. 48

	1 Introduction
	1.1 Context Overview
	1.2 Function
	1.3 Architecture

	2 Frequency Generation Basics
	2.1 Digital Counter Clock
	2.2 Drift and Offset adjustments
	2.3 Frequency Generation
	2.4 Sine Wave Generation

	3 Register Set
	3.1 Register Overview
	3.2 Register Descriptions
	3.2.1 General
	3.2.1.1 CLK Frequency Generator Control Register
	3.2.1.2 CLK Frequency Generator Status Register
	3.2.1.3 CLK Frequency Generator Polarity Register
	3.2.1.4 CLK Frequency Generator Version Register
	3.2.1.5 CLK Frequency Generator Cable Delay Register
	3.2.1.6 CLK Frequency Generator Frequency Register
	3.2.1.7 CLK Frequency Generator Cycles Per Second

	4 Design Description
	4.1 Top Level – Clk FrequencyGeneratorSine
	4.1.1.1 Parameters
	4.1.1.2 Structured Types
	4.1.1.2.1 Clk_Time_Type
	4.1.1.2.2 Clk_FrequencyGeneratorStaticConfig_Type
	4.1.1.2.3 Clk_FrequencyGeneratorStaticConfigVal_Type

	4.1.1.3 Entity Block Diagram
	4.1.1.4 Entity Description
	4.1.1.5 Entity Declaration

	4.2 Design Parts
	4.2.1 Frequency Generator
	4.2.1.1 Entity Block Diagram
	4.2.1.2 Entity Description
	4.2.1.3 Entity Declaration

	4.2.2 Registerset
	4.2.2.1 Entity Block Diagram
	4.2.2.2 Entity Description
	4.2.2.3 Entity Declaration

	4.3 Configuration example
	4.3.1 Static Configuration
	4.3.2 AXI Configuration

	4.4 Clocking and Reset Concept
	4.4.1 Clocking
	4.4.2 Reset

	5 Resource Usage
	5.1 Intel/Altera (Cyclone 10)
	5.2 AMD/Xilinx (Artix 7)
	5.3

	6 Delivery Structure
	7 Testbench
	7.1 Run Testbench

	8 Reference Designs
	8.1 Intel/Altera: Cyclone 10 LP RefKit
	8.2 AMD/Xilinx: Digilent Arty
	8.3 AMD/Xilinx: Vivado Version

