/\/ NetTimeLogic

ClockCounterClock

Reference Manual

Product Info

Product Manager Sven Meier

Author(s) Sven Meier

Reviewer(s) Thomas Schaub

Version 2.4

Date 11.04.2025

AdjCounterClock Reference Manual 2.4 Page 1 0of 103

/ Net Logic

Copyright Notice

Copyright © 2025 NetTimelLogic GmbH, Switzerland. All rights reserved.
Unauthorized duplication of this document, in whole or in part, by any means, is
prohibited without the prior written permission of NetTimelLogic GmbH, Switzer-
land.

All referenced registered marks and trademarks are the property of their respective
owners

Disclaimer

The information available to you in this document/code may contain errors and is
subject to periods of interruption. While NetTimelLogic GmbH does its best to
maintain the information it offers in the document/code, it cannot be held respon-
sible for any errors, defects, lost profits, or other consequential damages arising
from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-
UCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS,” WITH NO WARRANTIES
WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES,
INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE
HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO
EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY
DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS
DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS
PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION
THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-
MENT/CODE.

AdjCounterClock Reference Manual 2.4 Page 2 of 103

/ Net Logic

Overview

NetTimelLogic’s Clock (CLK) Counter Clock is a full hardware (FPGA) only imple-
mentation of an adjustable counter clock with Pl servo loop and spread adjust-
ment. The whole protocol algorithms and calculations are implemented in the core,
no CPU is required. This allows running synchronization completely independent
and standalone from the user application. The Adjustable Counter Clock has multi-
ple selectable input adjustments: PTP, PPS, TOD, IRIG, RTC and REG. The time and
settings can be configured either by signals or by an AXlI4Lite-Slave Register inter-
face.

Key Features:

. 32 bit second and 32 bit nanosecond counter clock with fractional extension

. Provides time for all other cores

. 1 millisecond pulse generator aligned with the counter clock

. Allows non-integer clock periods (fractions)

. Multiplexing of multiple adjustment inputs

. 6 different adjustment sources: PTP, PPS, TOD, IRIG, RTC and REG

. Evenly spread offset and drift correction over time (offset might be set hard
in case of large offsets)

. Hard setting of time possible

. Individual hardware only Pl servo loops for offset and drift correction (Pl pa-
rameters individually configurable)

. Runtime changeable Pl parameters

. Offset correction: min 1 ns/s (optional 1 ns/2"16s), max 0.5 s/s

. Drift correction: min 1 ns/s (optional /2716 ns/s), max 0.05 s/s

. Advanced Holdover Functionality (Averaging over N samples)

. Optional Outlier Filter with thresholds and window adjustment algorithm

. Optional Rate Change Limiter

. Conversion of fractional adjustments into even spread clock adjustments

. AXl4Lite register set or static configuration

. Get time and set time as well as adjusting of offset and drift possible via reg-
isters as well.

. External clock source selection

. Correction logging for Offset and Drift

. Linux Driver (PHC)

AdjCounterClock Reference Manual 2.4 Page 3 of 103

/\/ NetTimeLogic

Revision History

This table shows the revision history of this document.

Version
0.1

1.0

1.1

1.2

1.3
1.4
1.5

1.6

1.7
1.8

1.9

2.0
2.1

2.2
2.3
2.4

Table 1

Date
28.12.2015
13.05.2016
07.06.2016

24.02.2017

20.12.2017
09.01.2018
09.03.2018

12.06.2018

27.08.2020
22.04.2022
03.01.2023
09.08.2023
28.02.2025
31.03.2025
04.04.2025
11.04.2025

Revision History

Revision

First draft

First release

Added structured types section

Changed SNTP to RTC, added status interface and
ExtSelect and Corelnfo type

Added Fractional multiplication

Added Holdover

Added Driver

Added Dynamic Pl Servo Parameters and Loging
registers

Updated Clock Select Register

Added DCF and NTP

Added Vivado upgrade version description

Fractional Adjustments added

Advanced Holdover added

Outlier Filter added

Rate Change Limiter added

Dynamic Control added

AdjCounterClock Reference Manual 2.4

Page 4 of 103

// NetTimeLogic

——————————GMBH

Content

1.1 Context Overview 8
1.2 Function 9
1.3 Architecture 10

2.1 Digital Counter Clock 12

2.2 Drift and Offset adjustments 12

3.1 Register Overview 14
3.2 Register Descriptions 16
3.21 General 16

4.1 Top Level - Clk Clock 51
4.2 Design Parts 67
421 Clock Selector 67
422 Clock Adjuster 72
4.2.3 Clock Counter 80
424 Clock Timer 82
425 Registerset 84
4.3 Configuration example 90
4.31 Static Configuration 90
4.3.2 AXI| Configuration 91
4.4 Clocking and Reset Concept 93
4.41 Clocking 93
4472 Reset 93

AdjCounterClock Reference Manual 2.4 Page 5 of 103

// NetTimeLogic

——————————GMBH

5] Intel/Altera (Cyclone V) 95

52 AMD/Xilinx (Artix 7) 95

7.1 Run Testbench 97

8.1 Intel/Altera: Terasic SocKit 98
8.2 AMD/Xilinx: Digilent Arty 99
8.3 AMD/Xilinx: Vivado version 100

AdjCounterClock Reference Manual 2.4 Page 6 of 103

/\/ NetTimeLogic

Definitions

Definitions

A counter based clock that count in the period of its fre-

Counter Clock _
quency in nanoseconds

Proportional-Integral servo loop, allows for smooth correc-
Pl Servo Loop

tions
Offset Phase difference between clocks
Drift Frequency difference between clocks
Table 2: Definitions
Abbreviations
Abbreviations
AXI| AMBA4 Specification (Stream and Memory Mapped)
IRQ Interrupt, Signaling to e.g. a CPU
PPS Pulse Per Second
TS Timestamp
Clock

Counter Clock

Testbench

Look Up Table

Flip Flop

Random Access Memory

Read Only Memory

Field Programmable Gate Array

Hardware description Language for FPGA’s

Table 3: Abbreviations

AdjCounterClock Reference Manual 2.4 Page 7 of 103

/' NetlimeLogic

1 Introduction

1.1 Context Overview

The Adjustable Counter Clock is meant as a co-processor handling clock adjust-
ments and a time generator.

It is designed to work with all synchronization cores from NetTimelLogic. All correc-
tion inputs are multiplexed and selectable. For each correction input it allows drift,
offset and time corrections. The offset and drift values are filtered via a Pl servo
loop and evenly spread over time to allow smooth corrections.

It is the source of time for all other cores from NetTimelogic, not only the synchro-
nization cores which will in the end adjust the Counter Clock but also for the Signal
Timestampers and Signal Generators which work aligned with this Counter Clock.
It contains an AXl4Lite slave for configuration, time setting, getting and adjusting
from a CPU, this is however not required since the Adjustable Counter Clock can
also be configured statically via signals/constants directly from within the FPGA.

CPU

-AXI4L-

AXI4 Lite Slave

ClockCounterClock

L

| Time &

ExtSelect

Time &

-

Figure 1 Context Block Diagram

AdjCounterClock Reference Manual 2.4 Page 8 of 103

/ Net Logic

1.2 Function

The adjustable counter clock is, as the name says already, a counter clock in the
second and nanosecond format that can be frequency and phase adjusted.

It adds the clock period it runs on in nanoseconds every clock cycle. If the clock
period is a non-integer value e.g. for 66MHz => 15.1515... ns the fractional part of the
nanoseconds can be entered as a fraction e.g. for 66MHz =>10/66 => numerator =
10 and denumerator = 66. Every clock cycle a fraction counter is adding the numer-
ator with an overflow at the denumerator value. At each overflow of the fraction
counter it will add one additional nanosecond to the nanoseconds counter. This
way no error is introduced because of non-integer periods. The nanosecond coun-
ter has an overflow at 1000000000 nanoseconds. At each overflow of the nano-
second counter it will add an additional second to the seconds counter.

For adjustments additional nanoseconds can be added or subtracted from the
standard period to adjust frequency and phase and the time can be overwritten to
hard set the clock to a new time when small offset adjustments are not suitable e.g.
for the startup phase where a jump from the 1.1.1970 to the present is required.

To minimize the counter widths in other cores e.g. for timeouts or other time peri-
ods which don’t need nanosecond resolution a timer is used which generates a
counter clock aligned timer event every millisecond e.g. for a period count of 1 sec-
ond only 10 bits instead of 30 bits are needed.

An adjustment block takes the offset, drift and time adjustments as inputs and con-
verts them into a combined adjustment which is then applied to the counter clock.
The offset and drift is converted into evenly spread adjustments which allows
smooth corrections on the clock without time jumps. E.g. a drift of Tppm is adjusted
as 1 ns every 5000000 clock cycles at 50MHz. Again the adjustment is made with
fractional counter for minimal computational error introduction (max computa-
tional error Ins/s). In parallel to the correction a quality computation done to mark
the in-sync state of the clock if corrections are below a certain threshold for at
least 5 corrections.

Before the adjustments are converted for the counter clock, the drift and offset ad-
justments are passing a Pl servo loop for filtering and smoother adjustments. The PI
servo loop parameter for the drift and offset adjustments can be chosen individu-
ally, since frequency changes might happen quite slowly where offset adjustments
probably shall be done much faster. The Pl servo loops results are feed back to the
other cores for correcting of the next adjustments.

Since the Adjustable Counter Clock is the heart of a synchronization solution it can
take several adjustment inputs from different cores as input. Only one adjustment

AdjCounterClock Reference Manual 2.4 Page 9 of 103

/' NetlimeLogic

input is taken as source for corrections at the time. From the Registerset the multi-
plexer gets the selection of the current input or if in external mode a selection from
outside can be done.

The Registerset allows reading the in-sync state, taking a snapshot of the time,
overwriting the current time for e.g. the startup phase and also allows adjusting the
drift and offset as an additional input to the multiplexer.

1.3 Architecture

The core is split up into different functional blocks for reduction of the complexity,
modularity and maximum reuse of blocks. The interfaces between the functional
blocks are kept as small as possible for easier understanding of the core.

ClockCounterClock

PTP/PPS/
IRIG/
NMEA/

PTP/PPS/
IRIG/
NMEA/RTC

SNTP

Core

Figure 2: Architecture Block Diagram

Register Set
This block allows reading status values and writing configuration.

Mux
This block is a multiplexer which forwards only one of the many possible adjust-

ment inputs.

Pl Servo Loop

This block contains two Pl Servo Loops, one for the Offset and one for the Drift
correction. It also contains the Advanced Holdover mechanism and Outlier Filter.
The calculated values after the Pl Servo are provided to the cores for the next cal-

culations.

AdjCounterClock Reference Manual 2.4 Page 10 of 103

/ Net Logic

Adjustment

This block converts the adjustments in ratios or plain numbers to actual adjust-
ments on the clock, smoothly spread over time. It also combines Drift and Offset
adjustments and checks whether the clock is in sync.

Clock
This block is an adjustable counter clock with fractions. It provides the time used
by all other cores.

Tms Timer

This block is one millisecond timer aligned with the clock. It generates a pulse every
milliseconds. This is used by other cores to keep their counters small if only relative
time is needed and millisecond resolution is sufficient.

AdjCounterClock Reference Manual 2.4 Page 11 of 103

/ Net Logic

2 Clock Basics

2.1 Digital Counter Clock

A digital counter clock is the most commonly used type of absolute time sources
for digital systems. Its functionality is simple: every counter cycle it adds the period
of the counter cycle to a counter. Optimally the counter period is an integer num-
ber which makes things easier. Normally such a counter clock is split into two
counter parts, a sub seconds part and a seconds part, depending on the required
resolution the sub second part is in nanoseconds, microseconds or milliseconds or
even tens or hundreds of milliseconds. Once the sub seconds counter overflows
e.g. 1079 nanoseconds are reached, the seconds counter is incremented by one and
the sub seconds counter is reset to the remainder if there is any.

The highest resolution can be achieved when the counter period is equal the clock
period where the counter is run on, this is then normally a nanoseconds resolution,
however with a quantitation of the clock period (this is what this core implements).

Figure 3: shows a typical high resolution counter clock with nanosecond resolution
and a counter period equal the clock period and a clock of 50MHz which equals to
a 20ns clock period.

/]

Clock A A A A //

|/

Nanoseconds >< 0 >< 20 >< 40 ><// . ><999999980>< 0 >< 20 ><
Counter

I

=

T

A A ‘

/
Seconds 1234
Counter
I

Figure 3: Counter Clock

2.2 Drift and Offset adjustments

When a digital counter clock shall be synchronized there are two things that have
to be adjusted which is frequency differences aka drift and phase differences aka
offset. Normally the phase difference is only considered the phase within a second.
But for absolute time also the correct second is important.

AdjCounterClock Reference Manual 2.4 Page 12 of 103

/ Net Logic

There are basically two possibilities how to adjust a digital counter clock. One is to
keep the counter increment and adjust the clock frequency with e.g. load on a crys-
tal oscillator where the load can be adjusted via a DAC. The second and the one
used for this core, is to keep the clock frequency and adjust the counter increment.
This has the advantages that it normally has a much higher resolution e.g. Ins/s and
it doesn’t require or relies on external hardware. To adjust drift or offset additional
nanoseconds are added or subtracted from the standard increment of the period.
Where the first solution implicitly generates a smooth adjustment, for the second
this has to be calculated and explicitly done. E.g. for a 50 MHz counter clock an off-
set of +100 ns could be adjusted from one clock cycle to the next: 20 => 140=>160
=> .. (including 20 ns for the next clock cycle) or it could for example be spread
over the next 100 clock cycles: 20 => 41 => 62 =>73 =>... which is a much smoother
adjustment. The same applies to the drift which can also be set once in a period or
evenly spread over time.

But why is a smooth adjustment important? If for example a PWM signal is gener-
ated from the counter clock then you don’t want a time jump since the PWM would
not be correct anymore, and this is exactly what would happen if the time is not
corrected smoothly. The same applies for short time period measurements, these
would measure wrong periods because of the adjustments.

However it is not always possible to adjust the time smoothly, e.g. at startup of a
system the clock has to be adjusted by thousands of seconds to get to the time of
day (TAIl start with second O at midnight 1.1.1970) or if the adjustment is larger than
the possible adjustment in a given period. This cannot be done smoothly in a rea-
sonable time, therefore the time is then set with a time jump, and this also applies
for the solution where the frequency of the clock is adjusted.

Also important is that the clock doesn‘t count backwards during adjustments. Data
acquisition and measurement applications require for example a strongly monolith-
ically increasing time. This requirement basically limits the maximal adjustment so
the clock is still counting. E.g. at 50 MHz a norm period is 20 ns, the maximum ad-
justment is therefore +/-19ns per clock period so the clock would still count with
Tns per clock period.

All these mechanisms are implemented in this adjustable counter clock core.

When using the counter clock for signal timestamping or signal generation the
guantization fault is still the clock period but with an accurate nanosecond resolu-
tion.

AdjCounterClock Reference Manual 2.4 Page 13 of 103

/‘/ NetTimeLogic

3 Register Set

This is the register set of the Adjustable Counter Clock. It is accessible via AXI4Lite Memory Mapped. All registers are 32bit wide,

no burst access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Regis-

ter addresses are only offsets in the memory area where the core is mapped in the AXI| interconnects. Non existing register access

in the mapped memory area is answered with a slave decoding error.

3.1 Register Overview

Registerset Overview

Name

Clk ClockControl Reg

Clk ClockStatus Reg

Clk ClockSelect Reg

Clk ClockVersion Reg

Clk ClockTimeValuelL Reg

Clk ClockTimeValueH Reg

Clk ClockOffsetRateLimiter Reg
Clk ClockDriftRateLimiter Reg

Clk ClockTimeAdjValuelL Reg
Clk ClockTimeAdjValueH Reg
Clk ClockOffsetAdjValue Reg
Clk ClockOffsetAdjlinterval Reg
Clk ClockDirftAdjValue Reg
Clk ClockDriftAdjInterval Reg
Clk ClockDriftAdjFractions Reg

Description

Clock Read/Write Valid and Enabled Control Register

Offset
Ox0O0000000

Access

Clock Status Register 0Ox00000004 RO
Clock Adjustment Multiplexer selection Register 0OxO00000008 RW
Clock Version Register 0Ox0O000000C RO
Clock current Time Nanosecond Register 0Ox00000010 RO
Clock current Time Second Register 0x00000014 RO
Clock Offset Max Rate Change Limiter Register 0Ox00000018 RW
Clock Drift Max Rate Change Limiter Register 0Ox0000001C RW
Clock adjust Time Nanosecond Register 0Ox00000020 RW
Clock adjust Time Second Register 0Ox00000024 RW
Clock adjust Offset Nanosecond Register 0OxO00000030 RW
Clock adjust Offset Interval Nanosecond Register 0Ox00000034 RW
Clock adjust Drift Nanosecond Register 0x00000040 RW
Clock adjust Drift Interval Nanosecond Register 0Ox00000044 RW
Clock adjust Drift Fractions Register 0Ox00000048 RW

AdjCounterClock Reference Manual 2.4

Page 14 of 103

/\ NetTimeLogic

GMBH

Clk ClocklnSyncThreshold Reg

Clk ClockHoldoverMaxSamples Reg
Clk ClockOffsetOutlierFilter Reg

Clk ClockDriftOutlierFilter Reg

Clk ClockServoOffsetFactorP Reg

Clk ClockServoOffsetFactorl Reg

Clk ClockServoDriftFactorP Reg

Clk ClockServoDriftFactorl Reg

Clk ClockStatusOffset Reg

Clk ClockStatusDrift Reg

Clk ClockStatusOffsetFractions Reg
Clk ClockStatusDriftFractions Reg
Clk ClockStatusHoldover Reg

Clk ClockStatusHoldoverFractions Reg
Clk ClockStatusHoldoverSamples Reg
Clk ClockStatusOffsetOutliers Reg
Clk ClockStatusDriftOutliers Reg

Clk ClockDynamicControl Reg

Clock In Sync Threshold Register Ox00000050 RW
Clock Holdover Max Samples Register 0Ox00000054 RW
Clock Offset Outlier Register 0Ox00000058 RW
Clock Drift Outlier Register 0Ox0O000005C RW
Clock Offset Servo P Factor Register 0Ox00000060 RW
Clock Offset Servo | Factor Register 0Ox00000064 RW
Clock Drift Servo P Factor Register 0Ox00000068 RW
Clock Drift Servo | Factor Register 0Ox0000006C RW
Clock corrected Offset Register Ox00000070 RO
Clock corrected Drift Register 0Ox00000074 RO
Clock corrected Offset Fractions Register Ox00000078 RO
Clock corrected Drift Fractions Register Ox0000007C RO
Clock calculated Holdover Drift Register Ox00000080 RO
Clock corrected Holdover Drift Fractions Register Ox00000084 RO
Clock averaged Holdover Samples Register 0Ox00000088 RO
Clock Offset Outliers Register Ox00000090 RO
Clock Drift Qutliers Register Ox00000094 RO
Clock Dynamic Control Register 0Ox00000100 RW

AdjCounterClock Reference Manual 2.4

Page 15 of 103

/ Net Logic

3.2 Register Descriptions
3.2.1 General

3.2.1.1 CLK Clock Control Register

Used for general control over the Adjustable Counter Clock. To get a new time snapshot the time read flag has to be set and the
read done flag is asserted. Since most adjustment values are multi register values, set flags are available to mark validity of the
whole value.

Clk ClockControl Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0]

E
LU

&) g — _

|« g < S|4 |u
Q| & O 5 ” o e m
< I 1 Ol o) 1 O 1 — L |_L|| <
L L 1 > Ll wn -z
Dfl > Il 9) o o | W > w
w | = > | T % @ ("5 -
> @) >'
= <l

<
RO RW RO RW RW RO RW RO RW | RW RW RW

Reset: OxO0000000
Offset: OxO000
Name \ Description Bits \ Access
Time Read done (autocleared) Bit: 31 RO

AdjCounterClock Reference Manual 2.4 Page 16 of 103

GMBH

/\ NetTimeLogic

TIME_READ Time Read (autocleared) Bit: 30 RW

= Reserved, read O Bit: 29:18 RO

ADV_HO_OFFSET Add Offset for advance Holdover calculation, not recom- Bit: 17 RW
mended, write O

ADV_HOLDOVER_ENA Enable Advanced Holdover calculation and handling Bit: 16 RW

- Reserved, read O Bit: 15:9

SERVO_VAL Servo Parameters Valid (autocleared), shall only be set when | Bit: 8 RW
the clock is disabled

= Reserved, read O Bit: 7:4 RO

DRIFT_VAL Drift Adjustment Valid (autocleared) Bit: 3 RW

OFFSET_VAL Offset Adjustment Valid (autocleared) Bit: 2 RW

TIME_VAL Time Adjustment Valid (autocleared) Bit: 1 RW

ENABLE Enable Bit: O RW

AdjCounterClock Reference Manual 2.4 Page 17 of 103

/\/ NetTimeLogic

3.2.1.2 CLK Clock Status Register

Marks if the clock is in sync. In sync means 5 consecutive offset where below the threshold.

Clk ClockStatus Reg

Reg Description

N

IN_SYNC

IN_HOLDOVER

ADV_HOLDOVER_OK

RO

x
o
X
o
X
O

Reset: OxOO000000

Offset: OxO004

Name Description
= Reserved, read O

Bit: 31:3

ADV_HOLDOVER_OK Advanced Holdover calculated

IN_HOLDOVER In holdover, after in sync for N seconds no new adjustment

IN_SYNC In sync; Last 5 corrections below threshold

Bit: 2 RO
Bit: 1 RO
Bit: O RO

AdjCounterClock Reference Manual 2.4

Page 18 of 103

/ Net Logic

3.2.1.3 CLK Clock Select Register

Which input adjustment shall be active. If external select is active the CLK_SELECTED field shows the actual selection

Clk ClockSelect Reg

Reg Description

CLK_SELECTED
CLK_SELECT

RO RO RO RW
Reset: OxOO000000
Offset: OxO008

Description Access
Reserved, read O Bit: 31:.24 RO

AdjCounterClock Reference Manual 2.4 Page 19 of 103

/

Net ' imelLogic

GMBH

CLK_SELECTED

CLK_SELECT

Selected Source for Clock Adjustments:
None = 0O
Tod =1

Irig = 2

Pps =3
Pto =4
Rtc=5
Dcf =6
Ntp =7
Regs = 254
Ext = 255

Bit: 23:16

RO

Reserved, read O

Bit: 15:8

RO

Source for Clock Adjustments:
None =0
Tod =1

Irig =2

Pps =3
Ptop =4
Rtc =5
Dcf=6
Ntp =7
Regs = 254
Ext = 255

Bit: 7.0

RW

AdjCounterClock Reference Manual 2.4

Page 20 of 103

/ Net Logic

3.2.1.4 CLK Clock Version Register

Version of the IP core, even though is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor
and bits 15 down to O the build numbers.

Clk ClockVersion Reg

Reg Description

VERSION

RO
Reset; OXXXXXXXXX
Offset: OxO00C

Description Access

Version of the core

AdjCounterClock Reference Manual 2.4 Page 21 of 103

/ Net Logic

3.2.1.5 CLK Clock Time Value Low Register

Time snapshot value nanosecond part.

Clk ClockTimeValuelL Reg

Reg Description

TIME_NS

RO
Reset: OxOO000000
Offset: OxO010

Name Description Bits Access \
Snapshoted Time Nanosecond Bit: 31:.0 RO

AdjCounterClock Reference Manual 2.4 Page 22 of 103

/ Net Logic

3.2.1.6 CLK Clock Time Value High Register

Time snapshot value second part.

Clk ClockTimeValueH Reg

Reg Description

RO
Reset: OxOO000000
Offset: Ox0014

Bits Access

Name Description
Bit: 31.0 RO

Snapshoted Time Second

AdjCounterClock Reference Manual 2.4 Page 23 of 103

/ Net

Logic

3.2.1.7 CLK Clock Offset Max Rate Change Limiter Register

This Registers allows to limit the maximum offset per adjustment.

Clk ClockOffsetRateLimiter Reg

Reg Description

3 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 |20 | 19O [18 [17 | 6 | 15 | 4 | 13|12 10|10 6 5 2 1 0

<

z

w

rxl =

1] >

= 4|

= i

_I| &

i T

wn O

s

o

O

RW

Reset: 1000000000
Offset: Ox0018

Name Description Bits Access
Enable Offset Limiter Bit: 31 RW
Offset Max Rate Change Limit in Nanoseconds Bit: 30:0 RW

AdjCounterClock Reference Manual 2.4

Page 24 of 103

/' NetlimeLogic

3.2.1.8 CLK Clock Drift Max Rate Change Limiter Register

This register allows to limit the drift to a ma

Clk ClockDriftRateLimiter Reg

ximum per adjustment

Reg Description
30 29 28 27 26 25 24 23 22

«

DRIFT_LIMIT_NS

DRIFT_LIMITER_ENA

DRIFT_LIMIT_FRACT

By
=
By
<

by}
=

Reset: Ox7FFFOOQO0O

Offset: Ox0O01C

Name
DRIFT_LIMITER_ENA

Description
Enable Drift Limiter

Bit: 31

Access
RW

DRIFT_LIMIT_NS

Drift Max Rate Change Limit in Nanoseconds/Second

Bit: 30:16

RW

DRIFT_LIMIT_FRACT

Drift Max Rate Change Limit in Fraction of Nanosec-

onds/Second

Bit: 15:0

RW

AdjCounterClock Reference Manual 2.4

Page 25 of 103

/ Net Logic

3.2.1.9 CLK Clock Time Adjustment Value Low Register

Time adjustment nanoseconds part value. Will overwrite the clock.

Clk ClockTimeAdjValuelL Reg

Reg Description

TIME_ADJ_NS

RW
Reset: OxOO000000
Offset: Ox0020

Description Access
Overwrite Time Nanosecond Bit: 31:.0 RW

AdjCounterClock Reference Manual 2.4 Page 26 of 103

/ Net Logic

3.2.1.10 CLK Clock Time Adjustment Value High Register

Time adjustment seconds part value. Will overwrite the clock.

Clk ClockTimeAdjValueH Reg

Reg Description

TIME_ADJ_S

RW
Reset: OxOO000000
Offset: Ox0024

Description

Overwrite Time Second Bit: 31:.0

AdjCounterClock Reference Manual 2.4 Page 27 of 103

/ Net Logic

3.2.1.11CLK Clock Offset Adjustment Value Register

Offset adjustment absolute value. A negative sign will slow down the clock, a positive sign therefore accelerates the clock to adjust

the phase.
Clk ClockOffsetAdjValue Reg

Reg Description

(92
pd pd
O !
o a
m N
0 0
'—L::)
O o
O
RW
Reset: OxO0O000000
Offset: OxO030
Name Description Bits Access \
Sign of the Adjustment O positive, 1 negative Bit: 31 RW
Offset Adjustment in Nanosecond Bit: 30:0 RW

AdjCounterClock Reference Manual 2.4 Page 28 of 103

/ Net Logic

3.2.1.12CLK Clock Offset Adjustment Interval Register

Offset adjustment interval. It defines the interval in which the offset shall be corrected. If the offset value is larger or equal the inter-

val, the time will be set directly.

Clk ClockOffsetAdjlnterval Reg

Reg Description

OFFSET_ADJ_INTV_NS

RW
Reset: OxOO000000
Offset: Ox0034

Description Access

Offset Adjustment Interval in Nanosecond

AdjCounterClock Reference Manual 2.4 Page 29 of 103

/ Net Logic

3.2.1.13CLK Clock Drift Adjustment Value Register

Drift adjustment value. Together with the drift interval this indicates a ratio of correction in the format ns per ns which means how

many nanoseconds shall be corrected in the interval. A negative sign will slow down the clock, a positive sign therefore accelerates
the clock.

Clk ClockDirftAdjValue Reg

Reg Description

DRIFT_SIGN
DRIFT_ADJ_NS

RW
Reset: OxO0O000000
Offset: Ox0040

Name Description Bits Access \
Sign of the Adjustment O positive, 1 negative Bit: 31 RW
Drift Adjustment in Nanosecond Bit: 30:0 RW

AdjCounterClock Reference Manual 2.4 Page 30 of 103

/ Net Logic

3.2.1.14 CLK Clock Drift Adjustment Interval Register

Drift adjustment interval. Together with the drift value this indicates a ratio of correction in the format ns per ns which means how

many nanoseconds shall be corrected in the interval specified by this register.

Clk ClockDriftAdjinterval Reg

Reg Description

DRIFT_ADJ_INTV_NS

RW
Reset: OxOO000000
Offset: Ox0044

Description
Drift Adjustment Interval in Nanosecond Bit: 31.0 RW

AdjCounterClock Reference Manual 2.4 Page 31 0of 103

/ Net Logic

3.2.1.15CLK Clock Drift Adjustment Fraction Register

Drift adjustment Fractions. This is the optional fractional extension of the drift value. It is a fraction of a Nanosecond:
E.g. Ox8000 = 0.5, Ox4000 = 0.25, Ox2000 = 0.125 ... any value is allowed.

O) AQC A O Redg
Reg De ptIo
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0O
)
pd
)
'_
Q
<
04
\ L
)
a
<E|
|_
L
o
a)
RO RW
Reset: OxO0O000000
Offset: Ox0048
Name Description Bits Access \
Reserved, read O Bit: 31116 RO
Drift Adjustment in Fractions of Nanosecond Bit: 15:0 RW

AdjCounterClock Reference Manual 2.4 Page 32 of 103

/ Net Logic

3.2.1.16CLK Clock In Sync Threshold Register

Threshold of the in sync indication flag. After consecutive offset adjustments below the threshold the InSync flag is asserted. The
threshold is in nanosecond and the default value is set via generic.

Clk ClockinSyncThreshold Reg

Reg Description

THRESHOLD_NS

RW
Reset; OXXXXXXXXX
Offset: OxO050

Description Access

Threshold for InSync flag in Nanoseconds

AdjCounterClock Reference Manual 2.4 Page 33 of 103

/ Net Logic

3.2.1.17CLK Clock Holdover Maximum Samples Register

Defines over how many samples the Advanced Holdover Drift shall be calculated. This is only the maximum. Depending on the sta-
bility of the oscillator longer is better or shorter is more appropriate.

Clk ClockHoldoverMaxSamples Reg

Reg Description

31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 6 | 15 |14 | 1312] n[|10] 9| 8 7 6 5 4 3 2 1 0
%)
L
1
o
>
<
1 ml
X
<
Z|
@)
T
RO RW
Reset: AdvancedHoldoverSamples_Gen
Offset: Ox0054

Name

Description Bits Access \
Reserved, read O Bit: 31:17 RO
Holdover Max Samples to Average Bit: 16:0 RW

AdjCounterClock Reference Manual 2.4 Page 34 of 103

/ Net

Logic

3.2.1.18CLK Clock Offset Outlier Filter Register

Offset Outlier Filter Threshold and enable. Threshold is in Nanoseconds before Servo Loop. If the core is in sync and the threshold

is exceeded the correction is skipped and the window doubled, if the threshold is in the window the correction is done and if the

value is in the range of half the window, the window is divided by 2. If the core is not in sync all corrections are passed.

Clk ClockOffsetOutlierFilter Reg

Reg Description

31 15
< 9
5 g
o 5
L L
H v
" 7
— —
LL L
[9)] wn
L L
L L
@) O
RW
Reset: 1000000000
Offset: Ox0058

Name Description Bits Access

Enable Offset Outlier Filter Bit: 31 RW

Offset Outlier Filter Threshold in Nanoseconds Bit: 30:0 RW

AdjCounterClock Reference Manual 2.4

Page 35 of 103

/ Net Logic

3.2.1.19CLK Clock Drift Outlier Filter Register

Drift Outlier Filter Threshold and enable. Threshold is in Nanoseconds/Seconds before Servo Loop. If the core is in sync and the
threshold is exceeded the correction is skipped and the window doubled, if the threshold is in the window the correction is done

and if the value is in the range of half the window, the window is divided by 2. If the core is not in sync all corrections are passed.

Clk ClockDriftOutlierFilter Reg

Reg Description

< 9
EI O
o 5
L L
H -
" 7
— —
L L
o o
&) a)
RW
Reset: 1000000000
Offset: OxO05C

Name Description Bits Access \

Enable Drift Outlier Filter Bit: 31 RW

Drift Qutlier Filter Threshold in Nanoseconds/Second Bit: 30:0 RW

AdjCounterClock Reference Manual 2.4 Page 36 of 103

/ Net Logic

3.2.1.20 CLK Clock Servo Offset Factor P Register

Proportional factor for the fractional offset multiplier. The Value is calculated the following way:

(MulP * 21©)/DivP

After reset the value is defined by the generics. This value MUST be below 2*16!

This register is only available if the generic BypassServo_Gen is false and the generic DynamicServoParameters_Gen is true.

Clk ClockServoOffsetFactorP Reg

Reg Description

N

x

O

'_

(@)

<

1 |_|_|

'_

L

%)

L

Ll

O

RO RW

Reset: OXOOOOXXXX
Offset: OxO060
Name Description Bits Access

Reserved, read O Bit: 31116 RO
Fractional multiplication Factor Offset P: ((Mul*2°16)/Div) Bit: 15:0 RW

AdjCounterClock Reference Manual 2.4 Page 37 of 103

/ Net Logic

3.2.1.21CLK Clock Servo Offset Factor | Register

Integral factor for the fractional offset multiplier. The Value is calculated the following way:

(Mull * 21%)/Divl

After reset the value is defined by the generics. This value MUST be below 216!

This register is only available if the generic BypassServo_Gen is false and the generic DynamicServoParameters_Gen is true.

Clk ClockServoOffsetFactorIiReg

Reg Description

N

O

'_

@)

<

| LL|

I_

L

()]

L

L

O

RO RW

Reset: OXOOOOXXXX
Offset: Ox0O064
Name Description Bits Access

Reserved, read O Bit: 31116 RO
Fractional multiplication Factor Offset I: ((Mul*2°16)/Div) Bit: 15:0 RW

AdjCounterClock Reference Manual 2.4 Page 38 of 103

/ Net Logic

3.2.1.22 CLK Clock Servo Drift Factor P Register

Proportional factor for the fractional drift multiplier. The Value is calculated the following way:

(MulP * 21©)/DivP

After reset the value is defined by the generics. This value MUST be below 216!

This register is only available if the generic BypassServo_Gen is false and the generic DynamicServoParameters_Gen is true.

Clk ClockServoDriftFactorP Reg

Reg Description

CL|

o

O

'_

@)

| <

“

I_

L

[

a)

RO RW

Reset: OXOOOOXXXX
Offset: Ox0O068
Name Description Bits Access

Reserved, read O Bit: 31116 RO
Fractional multiplication Factor Drift P: ((Mul*2°16)/Div) Bit: 15:0 RW

AdjCounterClock Reference Manual 2.4 Page 39 of 103

/ Net Logic

3.2.1.23 CLK Clock Servo Drift Factor | Register

Integral factor for the fractional drift multiplier. The Value is calculated the following way:

(Mull * 21%)/Divl

After reset the value is defined by the generics. This value MUST be below 216!

This register is only available if the generic BypassServo_Gen is false and the generic DynamicServoParameters_Gen are true.

Clk ClockServoOffsetFactorIiReg

Reg Description

oc'

O

|_

©)

| <

“

|_

L

o

@)

RO RW

Reset: OXOOOOXXXX
Offset: OxO06C
Name Description Bits Access

Reserved, read O Bit: 31116 RO
Fractional multiplication Factor Drift I: ((Mul*2°16)/Div) Bit: 15:0 RW

AdjCounterClock Reference Manual 2.4 Page 40 of 103

/ Net Logic

3.2.1.24 CLK Clock Status Offset Value Register

Last corrected offset in nanoseconds. This register is only available if the generic LogCorrections_Gen is true.

Clk ClockStatusOffset Reg

Reg Description

pd
. 2
U)I |
- 0
L)
wn LL
LLII: Ll
o @)
RO RO
Reset: OxO0O000000
Offset: Ox0070
Name Description Bits Access \
Sign bit: O = positive, 1 = negative Bit: 31 RO
Last corrected Offset value in Nanoseconds Bit: 30:0 RO

AdjCounterClock Reference Manual 2.4 Page 41 of 103

/ Net Logic

3.2.1.25 CLK Clock Status Drift Value Register

Last corrected drift in nanosecond. This register is only available if the generic LogCorrections_Gen is true.

Clk ClockStatusDrift Reg

Reg Description

z
2 z
(./7| '_l
n L
= @
E &
RO RO
Reset: OxO0O000000
Offset: Ox0074

Name Description Bits Access \

Sign bit: O = positive, 1 = negative Bit: 31 RO

Last corrected Drift value in Nanoseconds/Second (ppb) Bit: 30:0 RO

AdjCounterClock Reference Manual 2.4 Page 42 of 103

/ Net Logic

3.2.1.26 CLK Clock Status Offset Fraction Register

Offset adjustment Fractions. This is the optional fractional extension of the offset value. It is a fraction of Nanoseconds:
E.g. Ox8000 = 0.5, Ox4000 = 0.25, Ox2000 = 0.125 ... any value is allowed.

O A @ 2 A O Redg
Reg De ptIo
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0O
z
)
'_
: <
@)
x
L
RO RO
Reset: OxO0O000000
Offset: Ox0078
Name Description Bits Access \
Reserved, read O Bit: 31116 RO
Offset Adjustment in Fractions of Nanosecond Bit: 15:0 RO

AdjCounterClock Reference Manual 2.4 Page 43 of 103

/ Net Logic

3.2.1.27 CLK Clock Status Drift Fraction Register

Drift adjustment Fractions. This is the optional fractional extension of the drift value. It is a fraction of Nanoseconds:
E.g. Ox8000 = 0.5, Ox4000 = 0.25, Ox2000 = 0.125 ... any value is allowed.

O A) A O Reg
Reg De ptIo
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0O
z
)
|_
<
O
| x
-
|_
L
o
a)
RO RO
Reset: OxO0O000000
Offset: OxO07C
Name Description Bits Access \
Reserved, read O Bit: 31116 RO
Drift Adjustment in Fractions of Nanosecond Bit: 15:0 RO

AdjCounterClock Reference Manual 2.4 Page 44 of 103

/ Net Logic

3.2.1.28 CLK Clock Status Holdover Value Register

Last calculated Holdover drift in nanosecond. This register is only available if the generic LogCorrections_Gen is true.

Clk ClockStatusHoldoverReg

Reg Description

z
2 2
a |
x 0
> 5
3 2
O
O
< T
RO RO
Reset: OxO0O000000
Offset: Ox0080

Name Description Bits Access \

Sign bit: O = positive, 1 = negative Bit: 31 RO

Last calculated Holdover Drift value in PPB (ns/s) Bit: 30:0 RO

AdjCounterClock Reference Manual 2.4 Page 45 of 103

/ Net Logic

3.2.1.29 CLK Clock Status Holdover Fraction Register

Holdover Drift adjustment Fractions. This is the optional fractional extension of the drift value. It is a fraction of Nanoseconds:
E.g. Ox8000 = 0.5, Ox4000 = 0.25, Ox2000 = 0.125 ... any value is allowed.

O s OI1d0OVeE 3 O Redg
Reqg De ptio
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
)
z
©)
'_
<
O
04
1 I_I_|
04
L
>
O
a)
1
O
T
RO RO
Reset: OxO0O000000
Offset: Ox0084
Name Description Bits Access \
Reserved, read O Bit: 31:16 RO
Holdover Drift in Fractions of Nanosecond Bit: 15:0 RO

AdjCounterClock Reference Manual 2.4 Page 46 of 103

/ Net Logic

3.2.1.30 CLK Clock Holdover Samples Register

Defines over how many samples the Advanced Holdover Drift has been calculated.

Clk ClockHoldoverMaxSamples Reg

Reg Description

()]
L
|
[aR
>
! <
<,
©)
T
RO RO
Reset: OxOO000000
Offset: OxO088
Name Description Bits Access \
Reserved, read O Bit: 31:17 RO
Holdover Samples which were averaged Bit: 16:0 RO

AdjCounterClock Reference Manual 2.4 Page 47 of 103

/ Net Logic

3.2.1.31CLK Clock Nr of Offset Outliers Register
Number of Offset Outliers handled.

Clk ClockStatusOffsetOutliers Reg

Reg Description

OFFSET_OUTLIERS

RO
Reset: OxOO000000
Offset: OxO090

Description

Nr of Offset Outliers Bit: 31:0

AdjCounterClock Reference Manual 2.4 Page 48 of 103

/ Net Logic

3.2.1.32 CLK Clock Nr of Drift Outliers Register
Number of Drift Outliers handled.

Clk ClockStatusDriftOutliers Reg

Reg Description

DRIFT_OUTLIERS

RO
Reset: OxOO000000
Offset: Ox0094

Description

Nr of Drift Outliers Bit: 31:0

AdjCounterClock Reference Manual 2.4 Page 49 of 103

/ Net Logic

3.2.1.33 CLK Clock Dynamic Control Register

Used for dynamic adaptation of Clock parameters like Servo Params.

Clk ClockDynamicControl Reg

Reg Description

0
wn
>
<
0%
<
D_I

| O
>
a4
]
wl
'_
L
N

RO RW
Reset: OxO0000000
Offset: OxO100

Name \ Description Bits \ Access
Reserved, read O Bit: 31:1 RO
Set Parameters Valid (autocleared) Bit: O RW

AdjCounterClock Reference Manual 2.4 Page 50 of 103

// NetTimeLogic

GMBH

4 Design Description

The following chapters describe the internals of the Adjustable Counter Clock:
starting with the Top Level, which is a collection of subcores, followed by the de-
scription of all subcores.

4.1 Top Level - Clk Clock

4.1.1.1 Parameters

The core must be parametrized at synthesis time. There are a couple of parameters
which define the final behavior and resource usage of the core.

Name Type Size Description

If Static Configuration or AXI
StaticConfig_Gen boolean 1 is used:
true = Static, false = AXI

If external selection of correc-
tion shall be done or not:
ExtSelect_Gen boolean 1 true = external selection is
possible, false only selection
via reg

Clock Period in Nanosecond:

ClockClkPeriodNano- Default for 50 MHz = 20 ns, if

second_Gen natural 1 non-integer only the nanosec-

onds part here
ClockClkPeriodFract- ~atural : Fractional Clock Period Nu-
Num_Gen merator (O if integer)
ClockClkPeriod- ~atural : Fractional Clock Period Denu-
FractDeNum_Gen merator (O if integer)

Default value for the threshold
ClocklnSyncNanosec- ~atural : when the clock is considered
ond_Gen in sync in Nanoseconds

Default 500 ns

Value after how many sec-
ClocklnHoldover onds after in Sync without

natural 1

TimeoutSecond_Gen

new correction values it goes
in holdover

AdjCounterClock Reference Manual 2.4

Page 51 of 103

GMBH

/ NetlimeLogic

LogCorrections_Gen

BypassServo_Gen
Advanced
Holdover_Gen

AdvancedHoldover
Samples_Gen

QutlierFilter
Support_Gen
MaxRateChange
LimiterSupport_Gen
Fractional
Adjustment_Gen
DynamicServo
Parameters_Gen

DynamicControl
Support_Gen

DriftMulP_Gen

DriftDivP_Gen

DriftMull_Gen

DriftDivl_Gen

OffsetMulP_Gen

OffsetDivP_Gen

OffsetMull_Gen

OffsetDivl_Gen

Default 3 s

Log Correction values to reg-

boolean]

Isters

Bypass Pl Servo loops, the in-
boolean put will directly be taken for

calculations

If an advanced Holdover Cal-
boolean _

culation shall be used

How many samples shall be
natural used max for the Holdover

calculation

If an Outlier Filter shall be
boolean

used

If a Max Rate Change Limiter
boolean

shall be used

Do Fractional Adjustments
boolean

Allow to change the Pl Servo
boolean _

parameters at runtime

Allow to change the Clock pa-
boolean rameters dynamically at

runtime

Drift Proportional part ratio
natural

Numerator

Drift Proportional part ratio
natural

Denumerator

Drift Integral part ratio Nu-
natural

merator

Drift Integral part ratio Denu-
natural

merator

Offset Proportional part ratio
natural

Numerator

Offset Proportional part ratio
natural

Denumerator

Offset Integral part ratio Nu-
natural

merator

Offset Integral part ratio De-
natural

numerator

AdjCounterClock Reference Manual 2.4

Page 52 of 103

// NetTimeLogic

GMBH

AxiAddressRange _ AXI| Base Address
std_logic_vector 32

Low_Gen

. AX| Base Address plus Regis-
AxiAddressRange

, std_logic_vector 32 terset Size
High_Gen

Default plus OxFFFF

If in Testbench simulation

mode:
boolean 1 _ _
true = Simulation, false = Syn-

thesis

Table 4: Parameters

If an integer clock period is used all fraction parameters have to be O.

4.1.1.2 Structured Types

4.1.1.2.1 Clk_Time_Type

Defined in Clk_Package.vhd of library ClkLib
Type represents the time used everywhere. For this type overloaded operators +
and - with different parameters exist.

Field Name Description

Seconds of time

Second std_logic_vector

Nanosecond std_logic_vector 32 Nanoseconds of time

' _ Fraction numerator (mostly
Fraction std_logic_vector 2
not used)

: _ Positive or negative time, 1
Sign std_logic 1 _ .
negative, O = positive.

, _ Marks when the clock makes a
TimeJump std_logic 1

time jump (mostly not used)

Table 5: Clk_Time_Type

4.1.1.2.2 Clk_TimeAdjustment_Type

Defined in Clk_Package.vhd of library ClkLib
Type represents the time used everywhere. For this type overloaded operators +
and - with different parameters exist.

AdjCounterClock Reference Manual 2.4 Page 53 of 103

/\/ NetTimeLogic

Field Name

TimeAdjustment Clk_Time_Type

Description

Time to adjust

Interval std_logic_vector 32

Adjustment interval, for the
drift correction this is the de-
numerator of the rate in nano-
seconds (TimeAdjustment
every Interval = drift rate), for
offset correction this is the pe-
riod in which the time shall be
corrected(TimeAdjustment in
Interval), for setting the time
this has no mining.

std_logic 1

If the Adjustment is valid

Table 6: Clk_TimeAdjustment_Type

4.1.1.2.3 Clk_Corelnfo_Type
Defined in Clk_Package.vhd of library ClkLib

This is the type used for getting info about the cores state status.

Field Name

Clk_CoreState T
ype

State

Description

State of the core: Unknown_E,
Slave_E or Master_E

Accuracy std_logic_vector 8

Accuracy of the core, higher is
better

Enabled std_logic 1

If the core is enabled

InSync std_logic 1

If the core is synchronized

Error std_logic 1

If the core has an error

Table 7: Clk_Corelnfo_Type

4.1.1.2.4 Clk_UtclInfo_Type
Defined in Clk_Package.vhd of library ClkLib

This is the type used for getting info about the UTC status.

Field Name Size

Description

AdjCounterClock Reference Manual 2.4

Page 54 of 103

// NetTimeLogic

GMBH

UtcOffset

std_logic_vector

16

UTC Offset to TAI

UtcOffsetValid

std_logic

If UTC Info is valid

Leap59 std_logic

Leap 59 event

Leap6l std_logic

Leap 61 event

Table 8: Clk_UtcInfo_Type

4.1.1.2.5 Clk_ClockStaticConfig_Type

Defined in Clk_ClockAddrPackage.vhd of library ClkLib

This is the type used for static configuration.

Field Name

TimeAdjustment

OffsetAdjustment

DriftAdjustment

ClockSelect

Type Size Description
Clk_TimeAdjust- : Set the time to this value
ment_Type
Clk_TimeAdjust- : Do an offset adjustment with
ment_Type this value
Clk_TimeAdjust- : Do an drift adjustment with
ment_Type this value
Which adjustment input shall
be used:
0O => None
1=>Tod
, 2 =>lrig
std_logic_vector 32
3 =>Pps
4 => Ptp
5=>Rtc
6 => Regs
7 =>Ext

InSyncThreshold

std_logic_vector

32

Threshold of the in sync flag
indication in nanoseconds

Table 9: Clk_ClockStaticConfig_Type

4.1.1.2.6 Clk_ClockStaticConfigVal_Type

Defined in Clk_ClockAddrPackage.h of library ClkLib

This is the type used for valid flags of the static configuration.

AdjCounterClock Reference Manual 2.4

Page 55 of 103

/‘/ NetTimeLogic

GMBH

Field Name

Enable_Val
TimeAdjustment_Val
OffsetAdjustment_Val
DriftAdjustment_Val

Table 10:;

std_logic

Description

Enables the Clock

std_logic

Set the time

std_logic

Start an offset adjustment

std_logic

Start a drift adjustment

Clk_ClockStaticConfigVal _Type

4.1.1.2.7 Clk_ClockStaticStatus_Type

Defined in Clk_ClockAddrPackage.vhd of library ClkLib
This is the type used for static status.

Field Name

Corelnfo

Utcinfo

OffsetAdjustmentRaw

OffsetAdjustment

OffsetAdjustment
Fract

DriftAdjustmentRaw

DriftAdjustment

DriftAdjustment
Fract

DriftCountAdjustment

ClockTime
ClockSelect

Table 11

Type Size Description
Clk_Corelnfo_ : Info about the Cores state
Type
Clk_UtcInfo_ : Info about the UTC state
Type
Clk_TimeAdjust- : Offset Adjustment Raw
ment_Type
Clk_TimeAdjust- : Offset Adjustment
ment_Type

, Fraction Offset Adjustments
std_logic_vector 16
Clk_TimeAdjust- : Drift Adjustment Raw
ment_Type
Clk_TimeAdjust- : Drift Adjustment
ment_Type

, Fraction Drift Adjustments
std_logic_vector 16

Clk_DriftCountA
djustment_Type

Drift single Adjustments

Clk_Time_Type

Time of the Clock

std_logic_vector

16

Clock Selection

Clk_ClockStaticStatus_Type

4.1.1.2.8 Clk_ClockStaticStatusVal_Type

AdjCounterClock Reference Manual 2.4

Page 56 of 103

/\/ NetTimeLogic

Defined in Clk_ClockAddrPackage.h of library ClkLib
This is the type used for valid flags of the static status.

Field Name Description

Core Info is valid
UTC Info is valid

Corelnfo_Val std_logic

UtcIinfo_Val std_logic
OffsetAdjustment_Val Etellele]ls Offset Adjustment valid
DriftAdjustment_Val std_logic Drift Adjustment valid

OffsetAdjustment _ Offset Adjustment valid
std_logic 1

Raw_Val
DriftAdjustment Drift Adjustment valid

std_logic 1
Raw_Val

ClockTime_Val std_logic 1 Time is valid

Table 12: Clk_ClockStaticStatusVal_Type

4.1.1.3 Entity Block Diagram

1ms Pulsel

Adj. RegSelect

——Adj. PTP
——Adj. PPS
—Adj. IRIG
——Adj. TOD

—Adj. SN

~-Adj.Serv |

Figure 4: Adjustable Counter Clock

4.1.1.4 Entity Description

Clock Selector

This module multiplexes multiple adjustment inputs. Only one adjustment is active
at the time. This can be selected by a configuration register. PTP, PPS, TOD, IRIG,
RTC, REG and EXT (where the selection is feed from externally) are potential
sources. The multiplexer can also be set to disable any adjustment input.

See 4.2.1 for more details.

Clock Adjuster

AdjCounterClock Reference Manual 2.4 Page 57 of 103

/ Net Logic

This module contains the PI Servo loops for the Drift and Offset and the adjustment
conversion. It takes the adjustment inputs and converts them into periodic small
adjustments which are then set to the Counter Clock. E.g. a drift of Ins per 1000ns
is converted to a Ins adjustment every 50 clock cycles at a frequency of 5O0MHz.
For offset it works similar. E.g. 50ns shall be corrected in 2000ns which will be con-
verted into Ins every second clock cycle at 50MHz. The conversion of course also
works for non-integer corrections with minimal error (1/- Ins per correction cycle).
In addition it supervises the adjustments ad sets an InSync flag if 4 consecutive off-
set corrections were below a configurable threshold.

It also contains the Advanced Holdover, Outlier Filter and Rate Limiter mechanisms
See 4.2.2 for more details.

Clock Counter

This module is the heart of the core. It is a counter with nanosecond resolution in a
32 bit second and 32 bit nanosecond format. It can run with fractions to allow also
non-integer clock periods. It normally adds the clock period to the nanoseconds
counter every clock cycle but can add or subtract some extra nanosecond to do
the clock adjustment. It also has an overwrite mode where the clock can be set.
See 4.2.3 for more details.

Timer

This module creates a 1 millisecond timer event aligned with the Counter Clock. If
the clock makes a jump in time this may lead to a loss of an event or to two events
very close to each other.

See 4.2.4 for more details.

Registerset

This module is an AXl4Lite Memory Mapped Slave. It provides access to all regis-
ters and allows to configure the Adjustable Counter Clock. It can be configured to
either run in AX! or StaticConfig mode. If in StaticConfig mode, the configuration of
the resgisters is done via signals and can be easily done from within the FPGA
without CPU. If in AXI mode, an AXI| Master has to configure the Datasets with AXI
writes to the registers, which is typically done by a CPU. It also provides a status in-
terface which allows similar to the static configuration to supervise the status via
signals.

See 4.2.5 for more details.

AdjCounterClock Reference Manual 2.4 Page 58 of 103

GMBH

// NetTimeLogic

4.1.1.5 Entity Declaration

Name ir Type Size Description
Generics
General
: : If Static Configura-
StaticConfig_Gen boolean 1 _ ,
tion or AXI is used
If external selection
ExtSelect_Gen boolean 1 of sync source is
used
ClockClkPeriodNano- Clock Period in Na-
natural 1
second_Gen nosecond
: Fractional Clock Pe-
ClockClkPeriodFract- _ _
natural 1 riod Numerator (O if
Num_Gen _
integer)
: Fractional Clock Pe-
ClockClkPeriod- _
natural 1 riod Denumerator
FractDeNum_Gen o
(O if integer)
Default value for the
ClocklnSyncNanosec- threshold when the
natural 1 i)
ond_Gen clock is considered
in sync
Value after how
many seconds after
ClocklnHoldover in Sync without new
. natural 1 , .
TimeoutSecond_Gen correction values it
goes in holdover
Default 3 s
_ Log corrections to
LogCorrections_Gen boolean 1 ,
registers
Bypass Pl Servo
BypassServo_Gen boolean 1
loops
If an advanced
Advanced
boolean 1 Holdover Calcula-
Holdover_Gen ,
tion shall be used
AdvancedHoldover How many samples
natural 1
Samples_Gen shall be used max

AdjCounterClock Reference Manual 2.4 Page 59 of 103

/ NetlimeLogic

GMBH

OutlierFilter
Support_Gen

MaxRateChange
LimiterSupport_Gen

Fractional
Adjustment_Gen

DynamicServo

Parameters_Gen

DynamicControl
Support_Gen

DriftMulP_Gen

DriftDivP_Gen

DriftMull_Gen

DriftDivl_Gen

OffsetMulP_Gen

OffsetDivP_Gen

OffsetMull_Gen

OffsetDivl_Gen

AxiAddressRange

Low_Gen

for the Holdover
calculation

boolean

If an Outlier Filter
shall be used

boolean

If a Max Rate
Change Limiter shall
be used

boolean

Do Fractional Ad-
justments

boolean

Allow to change the
Pl Servo parameters
at runtime

boolean

Allow to change the
Clock parameters
dynamically at
runtime

natural

Drift Proportional
part ratio Numera-
tor

natural

Drift Proportional
part ratio Denumer-
ator

natural

Drift Integral part
ratio Numerator

natural

Drift Integral part
ratio Denumerator

natural

Offset Proportional
part ratio Numera-
tor

natural

Offset Proportional
part ratio Denumer-
ator

natural

Offset Integral part
ratio Numerator

natural

Offset Integral part
ratio Denumerator

std_logic_vector

32

AX| Base Address

AdjCounterClock Reference Manual 2.4

Page 60 of 103

// NetTimeLogic

GMBH

AxiAddressRange
High_Gen

std_logic_vector

32

AX| Base Address
plus Registerset
Size

Sim_Gen

System
SysClk_ClkIn

boolean

Ports

std_logic

If in Testbench sim-

ulation mode

System Clock

SysRstN_RstIn
Config

StaticConfig_Datln in

std_logic

Clk_Clock
StaticConfig_Type

System Reset

Static Configuration

StaticConfig_Valln in

Status
StaticStatus_DatOut out

Clk_Clock
StaticConfigVal
_Type

Clk_Clock
StaticStatus_Type

Static Configuration
valid

Static Status

StaticStatus_ValOut out

Timer Output

Timerims_EvtOut

AXl4 Lite Slave
AxiWriteAddrValid

Clk_Clock
StaticStatusVal

_Type

std_logic

std_logic

Static Status valid

Single clock cycle
event every millisec-
ond aligned with the
adjusted clock

Write Address Valid

_Valln

AxiWriteAddrReady out | std_logic 1 Write Address
_RdyOut - Ready
AXiWriteAddrAddressy IR TR 22 | Write Address
_AdrIn ~ -

A Write Address Pro-
_Datln tocol
AxiWriteDataValid in | std_logic 1 Write Data Valid
_Valln -

AxiWriteDataReady out | std_logic 1 Write Data Ready
RdyOut —

AxiWriteDataData in | std_logic_vector 22> | Write Data

_Datln B B

AxiWriteDataStrobe in | std_logic_vector 4 | Write Data Strobe

_Datln

AdjCounterClock Reference Manual 2.4

Page 61 of 103

// NetTimeLogic

GMBH

AxiWriteRespValid
_ValOut

AxiWriteRespReady
_Rdyln

AxiWriteResp
Response_DatOut
AxiReadAddrValid
_Valln

AxiReadAddrReady
_RdyOut

AxiReadAddrAddress

_AdrIn

AxiReadAddrProt
_Datln

AxiReadDataValid
_ValOut
AxiReadDataReady
_Rdyln
AxiReadData
Response DatOut

AxiReadDataData
__DatOut

ExtSelect_Datln

InSync Output

InSync_DatOut

InHoldover_DatOut

Time Output

ClockTime_DatOut

ClockTime_ValOut

Time Adjustment Input

Write Response

out | std_logic 1 ,
Valid
. . Write Response
in | std_logic 1
Ready
out | std logic vector 2 Write Response
in | std_logic 1 Read Address Valid
, Read Address
out | std logic 1
Ready
in | std_logic_vector 32 | Read Address
. . Read Address Pro-
in | std_logic_vector 3
tocol
out | std_logic 1 Read Data Valid
in | std_logic 1 Read Data Ready
out | std_logic_vector 2 | Read Data
_ Read Data Re-
out | std_logic_vector 32

Adjustment Selector Input

out

Clk_Select_Type

std_logic

sponse

Which core shall be
the source for the
correction when Se-
lect_Datln is exter-
nal, this is feed from
the outside

Clock Adjustments
were below a cer-
tain level

out

out

std_logic

Clk_Time_Type

No new Clock Ad-
justments after in
Sync for a defined
number of seconds

Adjusted Clock
Time

out

std_logic

Adjusted Clock
Time valid

AdjCounterClock Reference Manual 2.4

Page 62 of 103

/\/ NetTimeLogic

——————————GMBH

T — _ Clk_TimeAdjust- 1 Calculated new
_Datln n ment_Type Time from TOD core
Calculated new
Ti\;\;ﬁﬁ\djustmentTod in | std_logic; 1 | Time from TOD core
- valid
T — _ Clk_TimeAdjust- 1 Calculated new
_Datln n ment_Type Time from IRIG core
Calculated new
Ti\gﬁﬁ\djustmentlrig in | std_logic: 1 | Time from IRIG core
- valid
e . . Clk_TimeAdjust- 1 Calculated new
_Datln N ment_Type Time from PPS core
Calculated new
Ti\gﬁﬁ\djustmentpps in | std_logic: 1 | Time from PPS core
- valid
T T —— . Clk_TimeAdjust- 1 Calculated new
_Datln N ment_Type Time from PTP core
Calculated new
Ti\r;;ﬁﬁ\djustmentptp in | std_logic; 1 | Time from PTP core
- valid
I ———— . Clk_TimeAdjust- 1 Calculated new
_Datln N ment_Type Time from RTC core
Calculated new
Ti\gﬁﬁ\djustmenthC in | std_logic; 1 | Time from RTC core
w valid
TimeAdjustmentDcf . Clk_TimeAdjust- 1 Calculated new
_Datlin n ment_Type Time from DCF core
Calculated new
Ti\gﬁﬁ\djustmentDcf in | std_logic; 1 | Time from DCF core
= valid
- ' Clk_TimeAdjust- 1 Calculated new
_Datln n ment_Type Time from NTP core
Calculated new
Ti\gﬁﬁ\djustmentth in | std_logic; 1 | Time from NTP core
= valid
Offset Adjustment Input
OffsetAdjustmentTod _ Clk_TimeAdjust- : Calculated new Off-
_Datln n ment_Type set fromm TOD core

AdjCounterClock Reference Manual 2.4 Page 63 of 103

/\/ NetTimeLogic

GMBH

Calculated new Off-

O\l;;s”erEAdjustmentTod in | std_logic; 1 set from TOD core
o valid
OffsetAdjustmentlrig _ Clk_TimeAdjust- 1 Calculated new Off-
_Datin n ment_Type set from IRIG core
Calculated new Off-
O\?:Her‘gAdjustmentlrig in | std_logic: 1 | set from IRIG core
o valid
OffsetAdiustmentPps . Clk_TimeAdjust- 1 Calculated new Off-
_Datln n ment_Type set from PPS core
Calculated new Off-
O\‘;‘;SllerEAdeStmenths in | std_logic: 1 | set from PPS core
o valid
OffsetAdjustmentPtp . Clk_TimeAdjust- 1 Calculated new Off-
_Datln N ment_Type set from PTP core
Calculated new Off-
0\51;5”erEAdjustmentPtp in | std_logic: 1 | set from PTP core
o valid
e —— . Clk_TimeAdjust- 1 Calculated new Off-
_Datln N ment_Type set from RTC core
Calculated new Off-
O\';‘;SllerEAdeStmenthC in | std_logic: 1 | set from RTC core
- valid
e . Clk_TimeAdjust- 1 Calculated new Off-
_Datln N ment_Type set from DCF core
Calculated new Off-
0\1;1;s”er’5AdjustmentDcf in | std_logic; 1 | set from DCF core
o valid
e I —— ' Clk_TimeAdjust- 1 Calculated new Off-
_Datln n ment_Type set from NTP core
Calculated new Off-
O\';‘;SllerEAdeStmentth in | std_logic: 1 | set from NTP core
o valid

Offset Adjustment Output
_ _ Calculated new Off-
Clk_TimeAdjust-

OffsetAdjustment out 1 set after the PI
ment_Type

_DatOut

Servo loop

AdjCounterClock Reference Manual 2.4 Page 64 of 103

// NetTimeLogic

GMBH

OffsetAdjustment
_ValOut

Drift Adjustment Input
DriftAdjustmentTod
_Datln

DriftAdjustmentTod
_Valln

DriftAdjustmentlrig
_Datln

DriftAdjustmentlrig
_Valln

DriftAdjustmentPps
_Datln

DriftAdjustmentPps
_Valln

DriftAdjustmentPtp
_Datln

DriftAdjustmentPtp
_Valln

DriftAdjustmentRtc
_Datln

DriftAdjustmentRtc
_Valln

DriftAdjustmentDcf
_Datln

DriftAdjustmentDcf
_Valln

DriftAdjustmentNtp
_Datln

DriftAdjustmentNtp
_Valln

DriftAdjustment

_DatOut

Calculated new Off-

Drift Adjustment Output

out | std_logic; set after the PI
Servo loop valid
_ Clk_TimeAdjust- Calculated new Drift
N ment_Type from TOD core
, Calculated new Drift
in std_logic _
from TOD core valid
' Clk_TimeAdjust- Calculated new Drift
N ment_Type from IRIG core
, Calculated new Drift
in std_logic _
from IRIG core valid
' Clk_TimeAdjust- Calculated new Drift
N ment_Type from PPS core
, Calculated new Drift
in std_logic _
from PPS core valid
' Clk_TimeAdjust- Calculated new Drift
N ment_Type from PTP core
, Calculated new Drift
in | std_logic _
from PTP core valid
. Clk_TimeAdjust- Calculated new Drift
n ment_Type from RTC core
_ Calculated new Drift
in | std_logic)
from RTC core valid
_ Clk_TimeAdjust- Calculated new Drift
n ment_Type from DCF core
_ Calculated new Drift
in | std_logic)
from DCF core valid
_ Clk_TimeAdjust- Calculated new Drift
n ment_Type from NTP core
_ Calculated new Drift
in | std_logic

out

Clk_TimeAdjust-
ment_Type

from NTP core valid

Calculated new Drift
after the PI Servo

loop

AdjCounterClock Reference Manual 2.4

Page 65 of 103

GMBH

/\ NetTimeLogic

DriftAdjustment

_ValOut out

std_logic;

Calculated new Drift
after the PI Servo
loop valid

Table 13: Clock

AdjCounterClock Reference Manual 2.4

Page 66 of 103

/‘/ NetTimeLogic

4.2 Design Parts

The Adjustable Counter Clock core consists of a couple of subcores. Each of the
subcores itself consist again of smaller function block. The following chapters de-
scribe these subcores and their functionality.

4.2.1 Clock Selector

4.2.1.1 Entity Block Diagram

ExtSelect:

Select—l —|

——Adj. PTP|
——Adj. PPS{ Selected—jm
—Adj. IRIG] Offset Adj.
Brift Adj—-
Time Adj -

—Adj. TOD:
——Adj. RTC}
——Adj. Regj

Figure 5: Clock Selector

4.2.1.2 Entity Description

Mux Selector

This module multiplexes multiple adjustment inputs. Only one adjustment is active
at the time. This can be selected by a configuration register. PTP, PPS, TOD, IRIG,
RTC, REG and EXT (where the selection is feed from externally) are potential
sources. The multiplexer can also be set to disable any adjustment input.

4.2.1.3 Entity Declaration

Name ir Type Description

Generics

General
If external selection

ExtSelect_Gen boolean of sync source is
used
Ports

System
SysClk_ClIkIn [std_logic System Clock

SysRstN_Rstln [std_logic System Reset

Adjustment Selector Input

AdjCounterClock Reference Manual 2.4 Page 67 of 103

/\/ NetTimeLogic

GMBH

ExtSelect_Datln in

Clk_Select _Type

Which core shall be
the source for the
correction when Se-
lect_Datln is exter-
nal, this is feed from
the outside

Select_DatIn in

Adjustment Selector Output
Selected_DatOut out

Time Adjustment Input
TimeAdjustmentTod

Clk_Select Type

Clk_Select_Type

Clk_TimeAdjust-

Which core shall be
the source for the
correction

Which core was se-
lected as the source
for the correction

Calculated new

_Datln

ment_Type

Time from RTC core

_Datln in ment_Type Time from TOD core
Calculated new
Ti\;\;ﬁﬁ\djustmentTod in | std_logic; Time from TOD core
- valid
T N — _ Clk_TimeAdjust- Calculated new
_Datln n ment_Type Time from IRIG core
Calculated new
Ti\r;;ﬁﬁ\djustmentlrig in | std_logic; Time from IRIG core
- valid
TimeAdjustmentPps n Clk_TimeAdjust- C'alculated new
_Datln ment_Type Time from PPS core
Calculated new
Ti\r/gﬁﬁ\djustmentpps in | std_logic; Time from PPS core
- valid
TimeAdjustmentPtp R Clk_TimeAdjust- C-alculated new
_Datln ment_Type Time from PTP core
Calculated new
Ti\r/gﬁﬁ\djustmentptp in | std_logic; Time from PTP core
- valid
TimeAdjustmentRtc - Clk_TimeAdjust- Calculated new

AdjCounterClock Reference Manual 2.4

Page 68 of 103

/\/ NetTimeLogic

GMBH

Calculated new

_Datln

ment_Type

set from PPS core

Ti\gﬁﬁ\dJUStmenthC in | std_logic; Time from RTC core
w valid
TimeAdjustmentDer _ Clk_TimeAdjust- Calculated new
_Datln n ment_Type Time from DCF core
Calculated new
Ti\gﬁﬁ\djustmentDcf in | std_logic; Time from DCF core
w valid
TimeAdjustmentNtp . Clk_TimeAdjust- Calculated new
_Datln n ment_Type Time from NTP core
Calculated new
Ti\gﬁﬁ\djustmentth in | std_logic; Time from NTP core
w valid
TimeAdjustmentReg . Clk_TimeAdjust- Calculated new
_Datln N ment_Type Time from Registers
Calculated new
Ti\r/w;ﬁﬁ\djustmentReg in | std_logic; Time from Registers
- valid
Time Adjustment Output
_ _ Calculated new
TimeAdjustment out Clk_TimeAdjust- Time from the se-
_DatOut ment_Type
lected core
Calculated new
Ti\gleé\l?tjus’cme”t out | std_logic; Time from the se-
- lected core valid
Offset Adjustment Input
OffsetAdjustmentTod . Clk_TimeAdjust- Calculated new Off-
_Datln n ment_Type set from TOD core
Calculated new Off-
O\i;;s”er’:AdjustmentTod in | std_logic; set from TOD core
- valid
OffsetAdiustrmentlrig . Clk_TimeAdjust- Calculated new Off-
_Datln n ment_Type set from IRIG core
Calculated new Off-
O\i;zler’:Adjustmentlrig in | std_logic; set from IRIG core
- valid
e e n Clk_TimeAdjust Calculated new Off

AdjCounterClock Reference Manual 2.4

Page 69 of 103

/\/ NetTimeLogic

GMBH

Calculated new Off-

O\?;s”er’:Adjustmenths in | std_logic; set from PPS core
o valid
OffsetAdjustmentPtp . Clk_TimeAdjust- Calculated new Off-
_Datin ment_Type set from PTP core
Calculated new Off-
O\?;s“er’:AdjustmentPtp in | std_logic: set from PTP core
o valid
OffsetAdjustmentRtce . Clk_TimeAdjust- Calculated new Off-
_Datln ment_Type set from RTC core
Calculated new Off-
O\?;SllerEAdJUStmenthc in | std_logic: set from RTC core
o valid
OffsetAdjustmentDcf . Clk_TimeAdjust- Calculated new Off-
_Datln ment_Type set from DCF core
Calculated new Off-
0\1;1;s||er:AdjustmentDcf in | std_logic: set from DCF core
o valid
OffsetAdjustmentNtp . Clk_TimeAdjust- Calculated new Off-
_Datln ment_Type set from NTP core
Calculated new Off-
O\';‘;SllerEAdeStmentth in | std_logic: set from NTP core
- valid
OffsetAdjustmentReg . Clk_TimeAdjust- Calculated new Off-
_Datln ment_Type set from Registers
Calculated new Off-
OffsetAdjustmentReg EEEEEIICIIeTlox set from Registers

_Valln

Offset Adjustment Output

OffsetAdjustment

Clk_TimeAdjust-

valid

Calculated new Off-
set from the se-

_DatOut out ment_Type
lected core
Calculated new Off-
O\I;fs%cAtdjustment out | std_logic; set from the se-
alOu
o lected core valid
Drift Adjustment Input
: : Clk_TimeAdjust- Calculated new Drift
DriftAdjustmentTod in

_Datln

ment_Type

from TOD core

AdjCounterClock Reference Manual 2.4

Page 70 of 103

/\/ NetTimeLogic

GMBH

DriftAdjustmentTod
_Valln

DriftAdjustmentlrig
_Datln

DriftAdjustmentlrig
_Valln

DriftAdjustmentPps
_Datln

DriftAdjustmentPps
_Valln

DriftAdjustmentPtp
_Datln

DriftAdjustmentPtp
_Valln

DriftAdjustmentRtc
_Datln

DriftAdjustmentRtc
_Valln

DriftAdjustmentDcf
_Datln

DriftAdjustmentDcf
_Valln

DriftAdjustmentNtp
_Datln

DriftAdjustmentNtp
_Valln

DriftAdjustmentReg
_Datln

DriftAdjustmentReg
_Valln

DriftAdjustment
_DatOut

DriftAdjustment
_ValOut

Table 14

Calculated new Drift

Drift Adjustment Output

in | std_logic ,
from TOD core valid
_ Clk_TimeAdjust- Calculated new Drift
n ment_Type from IRIG core
_ Calculated new Drift
in | std_logic ,
from IRIG core valid
_ Clk_TimeAdjust- Calculated new Drift
N ment_Type from PPS core
, Calculated new Drift
in | std_logic _
from PPS core valid
_ Clk_TimeAdjust- Calculated new Drift
N ment_Type from PTP core
, Calculated new Drift
in | std_logic _
from PTP core valid
. Clk_TimeAdjust- Calculated new Drift
N ment_Type from RTC core
, Calculated new Drift
in | std_logic _
from RTC core valid
. Clk_TimeAdjust- Calculated new Drift
n ment_Type from DCF core
, Calculated new Drift
in | std_logic)
from DCF core valid
. Clk_TimeAdjust- Calculated new Drift
n ment_Type from NTP core
, Calculated new Drift
in | std_logic _
from NTP core valid
. Clk_TimeAdjust- Calculated new Drift
n ment_Type from Registers
, Calculated new Drift
in | std_logic] _
from Registers valid
_ _ Calculated new Drift
Clk_TimeAdjust-
out from the selected
ment_Type
core
Calculated new Drift
out | std_logic; from the selected

core valid

Clock Selector

AdjCounterClock Reference Manual 2.4

Page 71 of 103

/ Net Logic

4.2.2 Clock Adjuster

4.2.2.1 Entity Block Diagram

Servo Param.

T

T T
InSync | InSync
Threshold

A A

" Offlset
= Adj
L Py

—Ofset Ac —e—1—p - Count Ad—»
aomsersur— R (07" (R

| LOOPS Adj. DJUST
—riftAdi Ty }_‘—> FTime Adj—»
—Time Adj: 4 T

—Time"

Figure 6: Clock Adjuster

4.2.2.2 Entity Description

Pl Servo Loops

This module contains two individual Pl Servo loops; one for the Drift and one for
Offset correction. Both P and | can be configured individually for each servo loop.
The drift is summed up since the corrected drift is only the change to the current
frequency of the clock. All Pl calculated values are also made available to the other
IP cores to do the correct calculations based on the real adjustments.

The multiplications and divisions needed by the Pl Servo are made with a fractional

multiplier.

Of fsetMulPg,p, Of fsetMull;,,
- + fOffsetIn* -
Of fsetDivP;,, Of fsetDivig;,,

Of fsetOut = Of fsetin *

DTiftMulPGen
DriftDivPg,p,

DTiftMullGen

Dri = Dri Driftl
riftOut = OldDrift + (Driftin * DriftDivig,,

+ f Driftin

The following servo loop parameters are used per default in the reference designs:
. Offset: 3/4 P, 3/16 |
. Drift: 3/4 P, 3/16 |

The servo loop parameters can be changed at runtime if the DynamicServoParam-
eters_Gen generic is true and no static config is done. In this case the Pl Mul and
Div generics are only used as the default values. The servo parameters shall only be

changed when the core is disabled.

AdjCounterClock Reference Manual 2.4 Page 72 of 103

/l Net/imeLog IC

In addition to the Pl Servos this module also contains the Advanced Holdover logic
which averages the drift over N samples and applies the averaged value once it
goes int holdover. The number of samples which shall be averaged can be config-
ured at runtime, it uses a sliding window over the last N samples to get a more ac-
curate estimation of the actual drift.

This module contains also the Outlier Filter logic which checks the calculated offset
and drift adjustments for outliers. When the core is in sync and the adjustment not
in the threshold window, skips the adjustment and it doubles the window. On the
next adjustment it checks again the window and if again not in the window skips
the adjustment and doubles the window again. If it is in the window it will pass the
adjustments and if the adjustment is below half of the window divides the window
by 2 otherwise leaves the window as is.

It also contains the Rate Limiter logic which can limit the offset and drift individu-
ally, it can be used to limit changes even further.

Counter Adjuster

This module takes the adjustment inputs and converts them into periodic small ad-
justments which are then set to the Counter Clock. E.g. a drift of Ins per 1000ns is
converted to a Ins adjustment every 50 clock cycles at a frequency of 50MHz. For
offset it works similar. E.g. 50ns shall be corrected in 2000ns which will be con-
verted into Tns every second clock cycle at 50MHz. The conversion of course also
works for non-integer corrections with minimal error (1/- Ins per correction cycle).
In addition it supervises the adjustments ad sets an InSync flag if 4 consecutive off-
set corrections were below a configurable threshold, a hard set on the clock will
cause immediate InSync deasertion.

4.2.2.3 Entity Declaration

Name Dir Type Description

Generics

General

- natural 1
second_Gen nosecond

. If in Testbench sim-
Sim_Gen - boolean 1 ,
ulation mode

AdjCounterClock Reference Manual 2.4 Page 73 of 103

/ NetTimeLogic

GMBH

Clock Adjuster

ClocklnHoldover
TimeoutSecond_Gen

BypassServo_Gen

Advanced
Holdover_Gen

AdvancedHoldover
Samples_Gen

OutlierFilter
Support_Gen

MaxRateChange
LimiterSupport_Gen

Fractional

Adjustment_Gen

DynamicServo
Parameters_Gen

DynamicControl
Support_Gen

DriftMulP_Gen

DriftDivP_Gen

DriftMull_Gen

natural

Value after how
many seconds after
in Sync without new
correction values it
goes in holdover
Default 3 s

boolean

Bypass Pl Servo
loops

boolean

If an advanced
Holdover Calcula-
tion shall be used

natural

How many samples
shall be used max
for the Holdover
calculation

boolean

If an Qutlier Filter
shall be used

boolean

If a Max Rate
Change Limiter shall
be used

boolean

Do Fractional Ad-
justments

boolean

Allow to change the
Pl Servo parameters
at runtime

boolean

Allow to change the
Clock parameters
dynamically at
runtime

natural

Drift Proportional
part ratio Numera-
tor

natural

Drift Proportional
part ratio Denumer-
ator

natural

Drift Integral part
ratio Numerator

AdjCounterClock Reference Manual 2.4

Page 74 of 103

GMBH

// NetTimeLogic

Drift Integral part

DriftDivl_Gen - natural 1 ,
ratio Denumerator

Offset Proportional
OffsetMulP_Gen - natural 1 part ratio Numera-
tor

Offset Proportional
OffsetDivP_Gen - natural 1 part ratio Denumer-
ator

Offset Integral part
OffsetMull_Gen - natural 1 _
ratio Numerator

: Offset Integral part
OffsetDivl_Gen - natural 1 _
ratio Denumerator

Ports

System
SysClk_Clkin ‘ in

SysRstN_RstIn ‘ in
Enable Input

Enable_Enaln ‘ std_logic Enable Correction

Time Input

std_logic System Clock

std_logic System Reset

Adjusted Clock
Time

Adjusted Clock
Time valid

ClockTime_DatIn in | Clk_Time_Type 1

ClockTime_Valln in | std_logic 1
Adjustment Selector Input
Which core was se-
Selected_DatIn in | Clk_Select_Type 1 lected as the source
for the correction

Servo Parameters Input

Fractional Multiplier
ServoOffset i std_logic_vector 32 b

_ New Parameters
std_logic 1

Servo_Valln

valid

FactorP_Datin Offset P
Fractional Multiplier

ServoOffset std_logic_vector 32 b
Factorl_Datln Offset |

: Fractional Multiplier
ServoDrift std_logic_vector 32 _ b
FactorP_Datln Drift P

: Fractional Multiplier
ServoDrift std_logic_vector 32 , b
Factorl_Datln Drift |

InSync Threshold Input

AdjCounterClock Reference Manual 2.4 Page 75 of 103

// NetTimeLogic

GMBH

When the clock is

InSync in | std_logic_vector 32 considered InSync
Threshold_DatIn

in Nanoseconds

INSync Output
Clock Adjustments

were below the
InSync_DatOut out | std_logic 1 threshold for at
least 4 adjustment
cycles

No new Clock Ad-

; td loai . justments after in
ou S ogic

InHoldover_DatOut _log Sync for a defined

number of seconds

HoldoverReady out | std_logic 1 Advanced Holdover
_DatOut - ready

How many samples

are used for the cur-
HoldoverSamples out | std_logic_vector 17
_DatOut rent Advanced

Holdover

Time Adjustment Input
, , Calculated new
Clk_TimeAdjust- _
in 1 Time from selected

ment_Type

TimeAdjustment

_Datln
core

Calculated new

TimeAdjustment

Vall in | std_logic; 1 Time from selected
_Valln

core valid

Offset Adjustment Input

_ _ Calculated new Off-
Clk_TimeAdjust-

OffsetAdjustment in 1 set from selected
_Datln ment_Type

core

Calculated new Off-
OffsetAdjustment in | std_logic; 1 set from selected

_Valln

core valid

Offset Adjustment Output

_ _ Calculated new Off-
Clk_TimeAdjust-
out 1 set after the PI

ment_Type

OffsetAdjustment

_DatOut

Servo loop

AdjCounterClock Reference Manual 2.4 Page 76 of 103

// NetTimeLogic

GMBH

Calculated new Off-

O\I;fsl%cAtdjustment out | std_logic; 1 set after the PI
alOu
- Servo loop valid
: Fractions of Nano-
OffsetAdJUStment out Std_|ogic_vector 15
Fract_DatOut seconds
OffsetAdjustmentSum [ENEEESICIItTeS 1 Offset was an Out-
Outlier_ValOut - lier
Drift Adjustment Input
DriftAdjustment ' Clk_TimeAdjust- : Calculated new Drift
_Datln N ment_Type from selected core
Calculated new Drift
D\r/if’ﬁéxdjustment in | std_logic 1 | from selected core
alln
o valid
Fractions of Nano-
l[:)riftf\%uacment in | std_logic_vector 15 | seconds (only for
rac atln
& REG adjustments)
Drift Adjustment Output
Clk TimeAdiust Calculated new Drift
: : imeAdjust-
DriftAdjustment out - . 1 after the PI Servo
_DatOut ment_Type
loop
Calculated new Drift
D\r/if’?édjlcustment out | std_logic; 1 | after the PI Servo
alOu
= loop valid
Drift Adjustment Sum Output
Calculated new Drift
DriftAdjustmentSum Clk_TimeAdjust- : after the Pl Servo
_DatOut out ment_Type loop as sum with
old
Calculated new Drift
DriftAdjustmentSum td logic: 1 after the Pl Servo
out STtA_10gIC; X
_ValOut loop as sum with
old
. : Fractions of Nano-
Fract_DatOut seconds
: : Drift Outli
DirftAdjustmentSum out | std_logic; 1 Tt was an Dutier

Outlier_ValOut

Holdover Input

AdjCounterClock Reference Manual 2.4

Page 77 of 103

/‘/ NetTimeLogic

GMBH

HoldoverEnable
_Datln

HoldoverOffset
_Datln

HoldoverMaxSamples
_Datln

Holdover Output
HoldoverAdjustment
_DatOut

HoldoverAdjustment
_ValOut

HoldoverAdjustment
Fract_DatOut

Offset Outlier Filter
OffsetOutlier
Threshold_Datln
OffsetOutlier
Enable_DatlIn

Drift Outlier Filter
DriftOutlier
Threshold_Datln
DriftOutlier
Enable_DatIn

Offset Rate Limiter
OffsetMaxRate
ChangeLimit_DatlIn
OffsetMaxRate
ChangeEnable Datln
Drift Rate Limiter

DriftMaxRate
ChangeLimit_DatIn

DriftMaxRate
ChangeEnable_Datln

Time Adjustment Output

TimeAdjustment
_DatOut

Enable Advanced

in | std_logic; 1 Holdover Calcula-
tion
_ Add Offset to Drift
in | std_logic; 1

for Averaging

Maximum Samples

std_logic_vector 17 to Average for
Holdover
Clk_TimeAdjust- : Calculated Holdover
out ment_Type Drift
td logi : Calculated Holdover
S ogic
out | St_109 Drift valid
, Fractions of Nano-
std_logic_vector 15
seconds
_ Threshold for Offset
std_logic_vector 32]
Outliers
_ Enable Offset Out-
std_logic 1 . .
lier Filter
_ Threshold for Drift
std_logic_vector 32]
Outliers
_ Enable Drift Outlier
std_logic 1 .
Filter
, Limit for Offset Cor-
std_logic_vector 32 _
rections
, Enable Offset Lim-
std_logic 1 ,
iter
_ Limit for Drift Cor-
std_logic_vector 32

rections

out

std_logic

Clk_TimeAdjust-
ment_Type

Enable Drift Limiter

Calculated new
Time from selected
core to clock

AdjCounterClock Reference Manual 2.4

Page 78 of 103

// NetTimeLogic

GMBH

TimeAdjustment

_ValOut out

Counter Adjustment Output

CountAdjust-

ment_DatOut out

std_logic;

Clk_Count
Adjustment_Type

Calculated new
Time from selected
core to clock valid

Calculated new
counter adjustment
after Pl servo and
conversion to clock

CountAdjust-
ment_ValOut

out

std_logic;

Calculated new
counter adjustment
after Pl servo and
conversion to clock
valid

Table 15; Clock Adjuster

AdjCounterClock Reference Manual 2.4

Page 79 of 103

/\/ NetTimeLogic

4.2.3Clock Counter

4.2.3.1 Entity Block Diagram

= Count Adj
Time—p
—Time Adj.—

Figure 7: Clock Counter

4.2.3.2 Entity Description

Counter Clock

This is the adjustable counter clock with nanosecond resolution in a 32 bit second
and 32 bit nanosecond format. It can take any input frequency, also non integer
values with fractions. It normally adds the clock period to the nanoseconds counter
every clock cycle but can add or subtract some extra nanosecond to do the clock
adjustment. It also has an overwrite mode where the clock can be set. When the
nanosecond counter overflows to the next second the second counter is incre-
mented and the increment is added to the nanosecond part and a billion sub-
tracted to keep the remainder. If fractions are used, every clock cycle the fraction
numerator is summed up and when reaching the denominator value an extra nano-
second is added. The time domain is TAI, so after every reset the clock starts from
111970 at midnight which represents second O.

4.2.3.3 Entity Declaration

Name Type Description

Generics

Clock Counter

ClockClkPeriodNano- Clock Period in Na-
- natural 1
second_Gen nosecond
: Fractional Clock Pe-
ClockClkPeriodFract- , .
- natural 1 riod Numerator (O if
Num_Gen .
integer)
' Fractional Clock Pe-
ClockClkPeriod- .
- natural 1 riod Denumerator
FractDeNum_Gen L
(O if integer)

AdjCounterClock Reference Manual 2.4 Page 80 of 103

GMBH

// NetTimeLogic

System
SysClk_ClkIn

std_logic

System Clock

SysRstN_RstIn
Time Output

ClockTime_DatOut out

std_logic

Clk_Time_Type

System Reset

Adjusted Clock
Time

ClockTime_ValOut out

Time Adjustment Input

TimeAdjustment
_Dat

std_logic

Clk_TimeAdjust-
ment_Type

Adjusted Clock
Time valid

Overwrite Time

TimeAdjustment
_Val

CountAdjust-
ment_Datln

std_logic;

Clk_Count
Adjustment_Type

Overwrite Time
valid

Calculated new
counter adjustment
after Pl servo and

conversion to clock

CountAdjust-
ment_Valln

std_logic;

Calculated new
counter adjustment
after Pl servo and
conversion to clock
valid, make correc-
tion

Table 16; Clock Counter

AdjCounterClock Reference Manual 2.4

Page 81 of 103

/\/ NetTimeLogic

4.2.4Clock Timer

4.2.4.1Entity Block Diagram

—Timt,_’llms Pulse—pm-

Figure 8: Clock Timer

4.2.4.2 Entity Description

1 Millisecond Timer

This module creates a single clock cycle pulse every millisecond aligned with the

adjusted counter clock. This pulse is used by all NetTimelLogic’s IP cores to calcu-
late timeouts etc. If the counter clock makes a jump in time this can lead to a loss
of a pulse or two pulses next to each other.

4.2.4.3Entity Declaration

Name Dir Type Description

Generics

General
ClockClkPeriodNano-

Clock Period in Na-

natural 1
nosecond

second_Gen
Clock Adjuster

, Timer Interval be-
TimerlntervalNano- .
- natural 1 tween two events in

second_Gen
Nanosecond

Ports

System
SysClk_Clkin ‘ i std_logic

SysRstN_RstIn ‘ i std_logic
Time Input

System Clock

System Reset

Adjusted Clock
Time

Adjusted Clock
Time valid

ClockTime_DatlIn in | Clk_Time_Type 1

ClockTime_Valln in | std_logic 1

Timer Output

AdjCounterClock Reference Manual 2.4 Page 82 of 103

/\/ NetTimeLogic

——————————GMBH

Single clock cycle

i td loai . event every interval
' ou S ogic
Timer_EvtOut —9 aligned with the ad-

justed clock

Table 17: Timer

AdjCounterClock Reference Manual 2.4 Page 83 of 103

/' NetlimeLogic

4.2.5Registerset

4.2.5.1 Entity Block Diagram

~-AXI MV
Static |
Config

Figure 9: Registerset

4.2.5.2 Entity Description

Register Set

This module is an AXI4Lite Memory Mapped Slave. It provides access to all Regis-
ters and allows configuring the Adjustable Counter Clock. AXl4Lite only supports
32 bit wide data access, no byte enables, no burst, no simultaneous read and writes
and no unaligned access. It can be configured to either run in AXI or StaticConfig
mode. If in StaticConfig mode, the configuration of the Datasets is done via signals
and can be easily done from within the FPGA without CPU. For each parameter a
valid signal is available, the enable signal shall be set last (or simultaneously). To
change parameters the clock has to be disabled and enabled again. If in AX|I mode,
an AXI| Master has to configure the Datasets with AX| writes to the registers, which
is typically done by a CPU. Parameters can in this case also be changed at runtime.
For status supervision, similar to the static configuration the static status signals
are available which allows to use the values also directly from within the FPGA
without CPU.

4.2.5.3 Entity Declaration

Name Dir Type Size Description

Generics

Register Set

ClockinSyncNanosec- tural Default value for the
natura
ond_Gen threshold when the

AdjCounterClock Reference Manual 2.4 Page 84 of 103

/ NetlimeLogic

GMBH

StaticConfig_Gen

ExtSelect_Gen

LogCorrections_Gen

BypassServo_Gen

Advanced
Holdover_Gen

AdvancedHoldover
Samples_Gen

OutlierFilter
Support_Gen

MaxRateChange

LimiterSupport_Gen

FractionalMultiply
Gen

DynamicServo
Parameters_Gen

DynamicControl
Support_Gen

clock is considered
in sync

boolean

If Static Configura-
tion or AXl is used

boolean

If external selection
of sync source is
used

boolean

Log corrections to
registers

boolean

Bypass Pl Servo
loops

boolean

If an advanced
Holdover Calcula-
tion shall be used

natural

How many samples
shall be used max
for the Holdover
calculation

boolean

If an Outlier Filter
shall be used

boolean

If a Max Rate
Change Limiter shall
be used

boolean

Use a fractional mul-
tiplication (uses DSP
slices) instead of bi-
nary multiplication
and divisions (de-
fault)

boolean

Allow to change the
Pl Servo parameters
at runtime

boolean

Allow to change the
Clock parameters
dynamically at
runtime

AdjCounterClock Reference Manual 2.4

Page 85 of 103

// NetTimeLogic

GMBH

DriftMulP_Gen

DriftDivP_Gen

DriftMull_Gen

DriftDivl_Gen

OffsetMulP_Gen

OffsetDivP_Gen

OffsetMull_Gen

OffsetDivl_Gen

AxiAddressRange
Low_Gen

AxiAddressRange
High_ Gen

System
SysClk_ClkIn

SysRstN_RstiIn
Config

StaticConfig_Datln

StaticConfig_Valln

Status

StaticStatus_DatOut

natural

Drift Proportional
part ratio Numera-
tor

natural

Drift Proportional
part ratio Denumer-
ator

natural

Drift Integral part
ratio Numerator

natural

Drift Integral part
ratio Denumerator

natural

Offset Proportional
part ratio Numera-
tor

natural

Offset Proportional
part ratio Denumer-
ator

natural

Offset Integral part
ratio Numerator

natural

Offset Integral part
ratio Denumerator

AX| Base Address

- std_logic_vector 32
AXI| Base Address
- std_logic_vector 32 plus Registerset
Size
Ports
in | std_logic 1 System Clock
in | std_logic 1 System Reset
, Clk_Clock : Static Configuration
in
StaticConfig_Type
Clk_Clock Static Configuration
in StaticConfigVal 1 valid
_Type
Clk_Clock Static Status
out 1

StaticStatus_Type

AdjCounterClock Reference Manual 2.4

Page 86 of 103

// NetTimeLogic

GMBH

StaticStatus_ValOut

In Sync Input
InSync_DatlIn

InHoldover_DatIn

HoldoverReady_DatIn

HoldoverSamples
_Datln

Time Input

ClockTime_DatlIn

ClockTime_Valln

AXl4 Lite Slave
AxiWriteAddrValid
_Valln

AxiWriteAddrReady
_RdyOut

AxiWriteAddrAddress
_AdrIn

AxiWriteAddrProt
_Datln

AxiWriteDataValid
_Valln
AxiWriteDataReady
_RdyOut
AxiWriteDataData
_Datln
AxiWriteDataStrobe
_Datln

AxiWriteRespValid
_ValOut
AxiWriteRespReady
_Rdyln
AxiWriteResp

Response DatOut

AxiReadAddrValid
_Valln

AxiReadAddrReady
_RdyOut

Clk_Clock Static Status valid
out | StaticStatusVal 1
_Type
in | std_logic 1 InSync flag
in | std_logic 1 InHoldover flag
_ _ Advanced Holdover
in | std_logic 1
ready
How many samples
. , are used for the cur-
in | std_logic_vector 17
rent Advanced
Holdover
_ _ Adjusted Clock
in | Clk_Time_Type 1 .
Time
_ _ Adjusted Clock
in | std_logic 1 . .
Time valid
in | std_logic 1 Write Address Valid
_ Write Address
out | std logic 1
Ready
in | std_logic_vector 32 | Write Address
. . Write Address Pro-
in | std_logic_vector 3
tocol
in | std_logic 1 Write Data Valid
out | std_logic 1 Write Data Ready
in | std_logic_vector 32 | Write Data
in | std_logic_vector 4 | Write Data Strobe
_ Write Response
out | std_logic 1 _
Valid
. . Write Response
in | std_logic 1
Ready
out | std_logic_vector 2 Write Response
in | std_logic 1 Read Address Valid
, Read Address
out | std_logic 1

Ready

AdjCounterClock Reference Manual 2.4

Page 87 of 103

/‘/ NetTimeLogic

GMBH

Adrin - -
- Read Address Pro-
AxiReadAddrProt in | std_logic_vector 3
_Datlin tocol
AxiReadDataValid out | std_logic 1 Read Data Valid
_ValOut B
AxiReadDataReady in | std_logic 1 Read Data Ready
_Rdyln -
AXiReadData out Std |ogic vector 2 Read Data
Response_DatOut ~ _
: Read Data Re-
AxiReadDataData out | std_logic_vector 32
_DatOut sponse
InSync Threshold Output
When the clock is
InSync out | std logic_vector 32 considered InSync
Threshold_DatOut ,
in Nanoseconds
Adjustment Selector Output
Which core shall be
Select DatOut out | Clk_Select_Type 1 the source for the
correction
Servo Parameters Output
Fractional Multiplier
ServoOffset out | std_logic_vector 32 b
FactorP_DatOut Offset P
Fractional Multiplier
ServoOffset out | std_logic_vector 32 b
Factorl_DatOut Offset |
: Fractional Multiplier
ServoDrift out | std_logic_vector 32 , b
FactorP_DatOut Drift P
: Fractional Multiplier
ServoDrift out | std_logic_vector 32 , b
Factorl_DatOut Drift |
; td loai] New Parameters
out |s ogic
Servo_ValOut _log valid
Adjustment Selector Input
Which core was se-
Selected_DatIn in | Clk_Select_Type 1 lected as the source
for the correction
Offset Outlier Filter
- Threshold for Offset
OffsetOutlier out | std_logic_vector 32 _
Threshold_DatOut Outliers
- Enable Offset Out-

Enable_DatOut
Drift Outlier Filter

lier Filter

AdjCounterClock Reference Manual 2.4

Page 88 of 103

// NetTimeLogic

GMBH

DriftOutlier
Threshold_DatOut

DriftOutlier
Enable_DatOut

Offset Rate Limiter

OffsetMaxRate
ChangeLimit_DatOut

OffsetMaxRate
ChangeEnable Da-
tOut

Drift Rate Limiter

DriftMaxRate
ChangeLimit_DatOut

DriftMaxRate
ChangeEnable_Da-
tOut

OffsetAdjustment
_Datln

OffsetAdjustment
_Valln

OffsetAdjustment
Fract_DatlIn

OffsetAdjustment
Outlier_Valln

Drift Adjustment Input

DriftAdjustment
_Datln

DriftAdjustment
_Valln

DriftAdjustment
Fract_Datln

DriftAdjustment
QOutlier_Valln
Holdover Input

HoldoverAdjustment
_Datln

HoldoverAdjustment
_Valln

Offset Adjustment Input

Threshold for Drift

std_logic_vector 32
out —o91e- Outliers
td loai : Enable Drift Qutlier
S ogic
out —9 Filter
td logi ; o Limit for Offset Cor-
S ogic_vector
out —o91e- rections
td logi : Enable Offset Lim-
S ogic
out —9 iter
td loai ; - Limit for Drift Cor-
S ogic_vector
out —09Ic- rections
_ Enable Drift Limiter
out | std_logic 1
_ _ Calculated new Off-
Clk_TimeAdjust-
in 1 set from selected
ment_Type
core
Calculated new Off-
in | std_logic; 1 set from selected
core valid
_ Fractions of Nano-
in | std_logic_vector 15
seconds
_ Offset was an Out-
in | std_logic; 1 _
lier
. Clk_TimeAdjust- : Calculated new Drift
N ment_Type from selected core
Calculated new Drift
in | std_logic 1 from selected core
valid
_ Fractions of Nano-
in | std_logic_vector 15
seconds
in | std_logic; 1 Drift was an Outlier
' Clk_TimeAdjust- : Calculated Holdover
n ment_Type Drift
, Calculated Holdover
in | std_logic 1

Drift valid

AdjCounterClock Reference Manual 2.4

Page 89 of 103

/\/ NetTimeLogic

GMBH

HOIdoverAdeStment . Std_|ogic_vector 15 Fractions of Nano-

Fract_DatIn seconds

Time Adjustment Output
Clk_TimeAdjust- New Time to set

1
out ment_Type

TimeAdjustment
_DatOut

TimeAdjustment out | std_logic: . New Time to set

_ValOut valid

Offset Adjustment Output

OffsetAdjustment ot Clk_TimeAdjust- : New Offset

_DatOut ment_Type

OffsetAdjustment out | std_logic: 1 New Offset valid

_ValOut

Holdover Output

HoldoverEnable Enable Advanced

—DatOut std_logic; 1 Holdover Calcula-
tion

HoldoverOffset Add Offset to Drift

std_logic; 1
_DatOut out —°9 for Averaging

HoldoverMaxSamples Maximum Samples

_DatOut std_logic_vector 17 | to Average for

_ValOut

Holdover
Drift Adjustment Output . . .
DriftAdjustment ot Clk_TimeAdjust- : New Drift
_DatOut ment_Type
DriftAdjustment out | std_logic; 1 New Drift valid

Fractions of Nano-

DriftAdjustment std_logic_vector 15
seconds

Fract_DatOut

Enable Output
Enable Adjustable

Counter Clock

ClockEnable_DatOut std_logic 1

Table 18: Registerset

4.3 Configuration example

In both cases the enabling of the core shall be done last, after or together with the
configuration.

4.3.1 Static Configuration

constant ClkStaticConfig Con : Clk ClockStaticConfig Type := (
TimeAdjustment => Clk TimeAdjustment Type Rst Con,

AdjCounterClock Reference Manual 2.4 Page 90 of 103

/ Net Logic

OffsetAdjustment => Clk_TimeAdjustment Type Rst Con,
DriftAdjustment => Clk_TimeAdjustment Type Rst Con,
ClockSelect => Clk_Select Tod Con,
InSyncThreshold => x"000001F4" - +/- 500 ns

) i

constant ClkStaticConfigVal Con : Clk ClockStaticConfigVal Type := (

Enable Val = '1",
TimeAdjustment Val => '0",
OffsetAdjustment Val = '0",
DriftAdjustment Val => '0"'

)
Figure 10: Static Configuration

The ClockSelect and InSyncThreshold should be set before enabling, but can also
be changed when enabled. TimeAdjustment, DriftAdjustment and OffsetAdjust-
ment can only be set once the clock is enabled and only have an effect if
ClockSelect is set to REG.

4.3.2 AXI Configuration

The following code is a simplified pseudocode from the testbench: The base ad-
dress of the Clock is Ox10000000.

-- CLOCK

-- Config

-- select: REG

AXI WRITE 10000008 00000006

-- enable adjustable counter clock
AXI WRITE 10000000 00000001

-— set time: 970000000 nanoseconds
AXI WRITE 10000020 39D10680

-- set time: 2 seconds

AXI WRITE 10000024 00000002

-- set valid bits

AXI WRITE 10000000 00000003

-- select: TOD

AXI WRITE 10000008 00000001

-- in sync threshold: 500 ns

AXI WRITE 10000050 000001F4

Figure 11: AXI| Configuration

The Clock Select and In Sync Threshold registers should be set before enabling but
can also be changed when enabled. Time, Drift and Offset can only be set once the
clock is enabled and only have an effect if Clock Select is set to REG.

AdjCounterClock Reference Manual 2.4 Page 91 of 103

/ Net Logic

In the example the time is set first 2.97 seconds via register and then the TOD core
selected for further adjustments.

AdjCounterClock Reference Manual 2.4 Page 92 of 103

/ Net Logic

4.4 Clocking and Reset Concept

4.4.1 Clocking

To keep the design as robust and simple as possible, the whole Ordinary Clock, in-
cluding the Counter Clock and all other cores from NetTimelLogic are run in one
clock domain. This is considered to be the system clock. Per default this clock is
50MHz. Where possible also the interfaces are run synchronous to this clock. For
clock domain crossing asynchronous fifos with gray counters or message patterns
with meat stability flip-flops are used. Clock domain crossings for the AXI| interface
is moved from the AXI slave to the AXI interconnect.

Clock Frequency Description
System |
50MHz System clock where the CC runs on as
(Default) well as the counter clock etc.
AXI Interface |
50MHz Internal AXI bus clock, same as the sys-
(Default) tem clock

Table 19: Clocks

4.4.2Reset

In connection with the clocks, there is a reset signal for each clock domain. All re-
sets are active low. All resets can be asynchronously set and shall be synchronously
released with the corresponding clock domain. All resets shall be asserted for the
first couple (around 8) clock cycles. All resets shall be set simultaneously and re-
leased simultaneously to avoid overflow conditions in the core. See the reference
designs top file for an example of how the reset shall be handled.

Reset Polarity Description

System |

, Asynchronous set, synchronous release
Active low ,
with the system clock

AXI Interface |

AdjCounterClock Reference Manual 2.4 Page 93 of 103

/\/ NetTimeLogic

GMBH

AXI| Reset

Active low

Asynchronous set, synchronous release
with the AXI clock, which is the same as
the system clock

Table 20: Resets

AdjCounterClock Reference Manual 2.4

Page 94 of 103

/‘/ NetTimeLogic

5 Resource Usage

Since the FPGA Architecture between vendors and FPGA families differ there is a
split up into the two major FPGA vendors.

5.1 Intel/Altera (Cyclone V)

Configuration

Minimal
(No PI Servo)
Maximal (With Pl Servo)

Table 21 Resource Usage Intel/Altera

5.2 AMD/Xilinx (Artix 7)

Configuration

Minimal

(No PI Servo)
Maximal (With Pl Servo)

Table 22; Resource Usage AMD/Xilinx

AdjCounterClock Reference Manual 2.4 Page 95 of 103

/' NetlimeLogic

6 Delivery Structure

AXTI
|-Library

| -Package

CLK
|-Core
| -Doc
| -Driver
|-Library
| -Package
| -Refdesign
| -Testbench

COMMON
|-Library

| -Package

PPS

| -Package

SIM
| -Doc
| -Package
| -Testbench

|-Tools

AXI library folder
AXI library component sources

AXI library package sources

CLK library folder

CLK library cores

CLK library cores documentations
CLK library driver

CLK library component sources
CLK library package sources

CLK library cores reference designs

CLK library cores testbench sources and sim/log

COMMON library folder
COMMON library component sources

COMMON library package sources

PPS library folder

PPS library package sources

SIM library folder
SIM library command documentation

SIM library package sources

SIM library testbench template sources

SIM simulation tools

AdjCounterClock Reference Manual 2.4

Page 96 of 103

/\/ NetTimeLogic

7 Testbench

The Clock testbench consist of 1 parse/port type: AXI.
For configuration and result checks an AX| read and write port is used. The time
can be written and read back.

Figure 12: Testbench Framework

For more information on the testbbench framework check the Sim_ReferenceManual
documentation.

With the Sim parameter set the time base for timeouts are divided by 1000 to
100000 to speed up simulation time.

7.1 Run Testbench

1. Run the general script first

source XXX/SIM/Tools/source_with_args.tcl

2. Start the testbench with all test cases

src XXX/CLK/Testbench/Core/ClkClock/Script/run Clk Clock Tb.tcl

3. Check the log file LogFilel.txt in the XXX/CLK/Testbench/Core/ClkClock/Log/
folder for simulation results.

AdjCounterClock Reference Manual 2.4 Page 97 of 103

/' NetlimeLogic

8 Reference Designs

The Adjustable Counter Clock reference design contains a PLL to generate all nec-
essary clocks (cores are run at 50 MHz) and an instance of the Adjustable Counter
Clock IP core. Optionally it also contains an instance of a PPS Master Clock IP core
(has to be purchased separately). To instantiate the optional IP core, change the
corresponding generic (PpsMasterAvailable_Gen) to true via the tool specific wiz-
ards.

The Reference Design is intended to run just standalone, show the instantiation and
generate a PPS output. The PPS Master Clock is used to create a PPS output which
is compensated for the output delay and has a configurable duty cycle, if not avail-
able an uncompensated PPS is directly generated out of the MSB of the Time.

All generics can be adapted to the specific needs.

ClkRefDesign

AXI4 Lite Save

Figure 13: Reference Design

8.1 Intel/Altera: Terasic SocKit

The SocKit board is an FPGA board from Terasic Inc. with a Cyclone V SoC FPGA
from Intel/Altera. (http://www.terasic.com.tw/cgi-bin/page/archive.pl?Lan-
guage=English&CategoryNo=205&N0o=816)

1. Open Quartus 16.x

2. Open Project /CLK/Refdesign/Altera/SocKit/ClkClock/ClkClock.gpf

3. If the optional core PPS Master Clock is available add the files from the cor-
responding folders (PPS/Core, PPS/Library and PPS/Package)

4. Change the generics (PpsMasterAvailable_Gen) in Quartus (in the settings
menu, not in VHDL) to true for the optional cores that are available.

5. Rerun implementation

6. Download to FPGA via JTAG

AdjCounterClock Reference Manual 2.4 Page 98 of 103

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816

/' NetlimeLogic

PPS output,
on HSMC

e 5 T

(1L FEED

L e e e e e~ §—

PPS-LED Alive-LED Soft Reset

Figure 14: SocKit (source Terasic Inc)

For the ports on the HSMC connector the GPIO to HSMC adapter from Terasic Inc.
was used.

8.2 AMD/Xilinx: Digilent Arty

The Arty board is an FPGA board from Digilent Inc. with an Artix7 FPGA from
AMD/Xilinx. (http://store.digilentinc.com/arty-board-artix-7-fpga-development-

board-for-makers-and-hobbyists

1. Open Vivado 2019.1.
Note: If a different Vivado version is used, see chapter 8.3.

2. Run TCL script /CLK/Refdesign/Xilinx/Arty/ClkClock/ClkClock.tcl

a. This has to be run only the first time and will create a new Vivado Pro-
ject

3. If the project has been created before open the project and do not rerun the
project TCL

4. If the optional core PPS Master Clock is available add the files from the cor-
responding folders (PPS/Core, PPS/Library and PPS/Package) to the corre-
sponding Library (PpsLib).

AdjCounterClock Reference Manual 2.4 Page 99 of 103

http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/
http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/

/' NetlimeLogic

5. Change the generics (PpsMasterAvailable_Gen) in Vivado (in the settings
menu, not in VHDL) to true for the optional cores that are available.

6. Rerun implementation
7. Download to FPGA via JTAG

¥ RRYAVNET
3 386E aoasss

PPS-LED Alive-LED Soft Reset

Figure 15: Arty (source Digilent Inc)

8.3 AMD/Xilinx: Vivado version

BEGABEAE 65586888
ADIGILENT P

16 PPS output
| :]
| i 4

The provided TCL script for creation of the reference-design project is targeting

AMD/Xilinx Vivado 2019.1.

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or

higher.

If a higher Vivado version is used, the following steps are recommended:

e Before executing the project creation TCL script, the script's references of
Vivado 2019 should be manually replaced to the current Vivado version. For

example, if version Vivado 2022 is used, then:
o The statement occurrences:

set property flow "Vivado Synthesis 2019" S$obj

shall be replaced by:

set property flow "Vivado Synthesis 2022 Sobj

o The statement occurrences;

set property flow "Vivado Implementation 2019" Sobj

AdjCounterClock Reference Manual 2.4

Page 100 of 103

/ Net Logic

shall be replaced by:
set property flow "Vivado Implementation 2022" $Sobj
e After executing the project creation TCL script, the AMD/Xilinx IP cores,
such as the Clocking Wizard core, might be locked and a version upgrade
might be required. To do so:
1. At "Reports” menu, select "Report IP Status".
2. At the opened "IP Status” window, select "Upgrade Selected”. The tool
will upgrade the version of the selected IP cores.

AdjCounterClock Reference Manual 2.4 Page 101 of 103

/ Net Logic

A List of tables

Table 1. REVISION HISTOIY oo, 4
TADIE 2: DEIINITIONS ettt 7
Table 3: ABDIEVIATIONS (s 7
TAbIE 4: ParamEerS o 53
RIR=] ol (ST S O 1~ W o VST 1LY 1O TP 53
Table 6: CIK_TIiMeAdJUSEMENT TV i, 54
Table 7: ClK G OrIN O T Y 0 oo, 54
Table 8 CUK UL CIN O Ty 0 oo, 55
Table 91 Clk_ClockStatiCCoONTIG TV 0@ oo, 55
Table 10: Clk_ClockStaticCoNfigVal TV 08 .o, 56
Table T: ClK_ClockStatiCStatuUs TV e, 56
Table 12: Clk_ClockStaticStatusVal Ty e e, 57
TADIE T3: CLOCK ittt 66
Table T4: ClOCK SEIECTON ..o 71
Table 15 ClOCK A USERY ..o e, 79
Table 16: ClOCK COUNTET .o 81
TAIE 17 T et 83
Table T18: REGISTEISEE ..ot 90
TADIE 1. CIOCKS i s 93
Table 20: RESEES s 94
Table 21: Resource Usage INtel/AILEIa . .o 95
Table 22: Resource Usage AMD/ XIlINX ..., 95

B List of figures

Figure 1. Context BIOCK DIGgram .ottt e, 8
Figure 2. Architecture BlOCK Diagrram ..o, 10
FIgUre 31 COUNEEE ClOCK oottt 12
Figure 4: Adjustable Counter ClOCK ..., 57
FIGUIre 51 ClOCK SeIECTON oottt 67
FIgure 6: ClOCK A USTEE ..ot 72
FIGUre 7: ClOCK COUNLRI ..ot 80
FIGUIE 8: CIOCK T ittt 82
FIQUIE 9: REGISTEISEE ..ot 84
Figure 10: Static CoONfIGUIATION ..ottt 91
Figure 11: AXT CoNFIGUIATION .ottt 91

AdjCounterClock Reference Manual 2.4 Page 102 of 103

/ Net Logic

Figure 12: TesthenCh FrameEWOrrK ... e 97
Figure 13: R EIENCE DS TN e e e, 98
Figure 14: SOCKIT (SOUICE TeIASIC INC) et e 99
Figure 15: Arty (source DIgilent INC) e et 100

AdjCounterClock Reference Manual 2.4 Page 103 of 103

	1 Introduction
	1.1 Context Overview
	1.2 Function
	1.3 Architecture

	2 Clock Basics
	2.1 Digital Counter Clock
	2.2 Drift and Offset adjustments

	3 Register Set
	3.1 Register Overview
	3.2 Register Descriptions
	3.2.1 General
	3.2.1.1 CLK Clock Control Register
	3.2.1.2 CLK Clock Status Register
	3.2.1.3 CLK Clock Select Register
	3.2.1.4 CLK Clock Version Register
	3.2.1.5 CLK Clock Time Value Low Register
	3.2.1.6 CLK Clock Time Value High Register
	3.2.1.7 CLK Clock Offset Max Rate Change Limiter Register
	3.2.1.8 CLK Clock Drift Max Rate Change Limiter Register
	3.2.1.9 CLK Clock Time Adjustment Value Low Register
	3.2.1.10 CLK Clock Time Adjustment Value High Register
	3.2.1.11 CLK Clock Offset Adjustment Value Register
	3.2.1.12 CLK Clock Offset Adjustment Interval Register
	3.2.1.13 CLK Clock Drift Adjustment Value Register
	3.2.1.14 CLK Clock Drift Adjustment Interval Register
	3.2.1.15 CLK Clock Drift Adjustment Fraction Register
	3.2.1.16 CLK Clock In Sync Threshold Register
	3.2.1.17 CLK Clock Holdover Maximum Samples Register
	3.2.1.18 CLK Clock Offset Outlier Filter Register
	3.2.1.19 CLK Clock Drift Outlier Filter Register
	3.2.1.20 CLK Clock Servo Offset Factor P Register
	3.2.1.21 CLK Clock Servo Offset Factor I Register
	3.2.1.22 CLK Clock Servo Drift Factor P Register
	3.2.1.23 CLK Clock Servo Drift Factor I Register
	3.2.1.24 CLK Clock Status Offset Value Register
	3.2.1.25 CLK Clock Status Drift Value Register
	3.2.1.26 CLK Clock Status Offset Fraction Register
	3.2.1.27 CLK Clock Status Drift Fraction Register
	3.2.1.28 CLK Clock Status Holdover Value Register
	3.2.1.29 CLK Clock Status Holdover Fraction Register
	3.2.1.30 CLK Clock Holdover Samples Register
	3.2.1.31 CLK Clock Nr of Offset Outliers Register
	3.2.1.32 CLK Clock Nr of Drift Outliers Register
	3.2.1.33 CLK Clock Dynamic Control Register

	4 Design Description
	4.1 Top Level – Clk Clock
	4.1.1.1 Parameters
	4.1.1.2 Structured Types
	4.1.1.2.1 Clk_Time_Type
	4.1.1.2.2 Clk_TimeAdjustment_Type
	4.1.1.2.3 Clk_CoreInfo_Type
	4.1.1.2.4 Clk_UtcInfo_Type
	4.1.1.2.5 Clk_ClockStaticConfig_Type
	4.1.1.2.6 Clk_ClockStaticConfigVal_Type
	4.1.1.2.7 Clk_ClockStaticStatus_Type
	4.1.1.2.8 Clk_ClockStaticStatusVal_Type

	4.1.1.3 Entity Block Diagram
	4.1.1.4 Entity Description
	4.1.1.5 Entity Declaration

	4.2 Design Parts
	4.2.1 Clock Selector
	4.2.1.1 Entity Block Diagram
	4.2.1.2 Entity Description
	4.2.1.3 Entity Declaration

	4.2.2 Clock Adjuster
	4.2.2.1 Entity Block Diagram
	4.2.2.2 Entity Description
	4.2.2.3 Entity Declaration

	4.2.3 Clock Counter
	4.2.3.1 Entity Block Diagram
	4.2.3.2 Entity Description
	4.2.3.3 Entity Declaration

	4.2.4 Clock Timer
	4.2.4.1 Entity Block Diagram
	4.2.4.2 Entity Description
	4.2.4.3 Entity Declaration

	4.2.5 Registerset
	4.2.5.1 Entity Block Diagram
	4.2.5.2 Entity Description
	4.2.5.3 Entity Declaration

	4.3 Configuration example
	4.3.1 Static Configuration
	4.3.2 AXI Configuration

	4.4 Clocking and Reset Concept
	4.4.1 Clocking
	4.4.2 Reset

	5 Resource Usage
	5.1 Intel/Altera (Cyclone V)
	5.2 AMD/Xilinx (Artix 7)
	5.3

	6 Delivery Structure
	7 Testbench
	7.1 Run Testbench

	8 Reference Designs
	8.1 Intel/Altera: Terasic SocKit
	8.2 AMD/Xilinx: Digilent Arty
	8.3 AMD/Xilinx: Vivado version

