
  

 

 

   

  

    

 

RtcMaster Reference Manual 1.3  Page 1 of 63 

 

 

 

 

 

 

RtcMasterClock 
 

 

 

Reference Manual 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product Info 

Product Manager Sven Meier 

Author(s) Sven Meier 

Reviewer(s) - 

Version 1.3 

Date 03.07.2024 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 2 of 63 

Copyright Notice 

Copyright © 2025 NetTimeLogic GmbH, Switzerland. All rights reserved. 

Unauthorized duplication of this document, in whole or in part, by any means, is 

prohibited without the prior written permission of NetTimeLogic GmbH, Switzer-

land.  

All referenced registered marks and trademarks are the property of their respective 

owners 

 

Disclaimer 

The information available to you in this document/code may contain errors and is 

subject to periods of interruption. While NetTimeLogic GmbH does its best to 

maintain the information it offers in the document/code, it cannot be held respon-

sible for any errors, defects, lost profits, or other consequential damages arising 

from the use of this document/code.  

 
NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-

UCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES 

WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES, 

INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-

ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE 

HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO 

EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, 

INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY 

DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS 

DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS 

PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH 

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  

 

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION 

THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-

MENT/CODE. 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 3 of 63 

Overview 

NetTimeLogic’s Real Time Clock (RTC) Master Clock is a full hardware (FPGA) only 

implementation of a synchronization core able to synchronize an RTC or gets 

synchronized by an RTC. In addition, the time can be read and written aligned with 

the RTC PPS event. The RTC Master Clock core is designed to allow fast synchroni-

zation on startup, run in holdover mode when no other synchronization source is 

available and keep the Time of Day when powered down. The whole algorithms 

and calculations are implemented in the core, no CPU is required. This allows run-

ning RTC synchronization completely independent and standalone from the user 

application. The core can be configured/supervised either by signals or by an 

AXI4Lite-Slave Register interface.  

 

Key Features: 

• Real Time Clock (RTC) Master Clock 

• Supports DS1307 and MCP7941x (and compatible) Real Time Clocks (RTC) 

and self-configuration at startup 

• Allows to synchronize the internal clock to the RTC and vise versa  

• Built-in I2C controller with configurable baudrate 

• Aligned writing and reading of time with the RTC PPS 

• Hardware time conversion from Time of Day format (hh:mm:ss dd:mm:yyyy) 

into seconds since midnight 1.1.1970 (Linux, TAI, PTP) 

• PI Servo Loop in hardware 

• In combination with a Adjustable Counter Clock from NetTimeLogic: syn-

chronization accuracy: +/- 100ns 

• AXI4Lite register set or static configuration 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 4 of 63 

Revision History 

This table shows the revision history of this document. 

 

Version Date Revision 

0.1 04.01.2017 First draft 

1.0 24.02.2017 First release and added CoreInfo type 

1.1 20.12.2017 Status interface added 

1.2 03.01.2023 Added Vivado upgrade version description 

1.3 03.07.2024 Split I2C SDA into input, output and output enable 

Table 1:  Revision History 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 5 of 63 

Content 

1 INTRODUCTION 8 

1.1 Context Overview 8 

1.2 Function 9 

1.3 Architecture 10 

2 RTC BASICS 12 

2.1 RTC Internals 12 

2.2 Interface 12 

2.3 RTC Registers 14 

2.4 UTC vs TAI time bases 15 

3 REGISTER SET 16 

3.1 Register Overview 16 

3.2 Register Descriptions 17 

3.2.1 General 17 

4 DESIGN DESCRIPTION 26 

4.1 Top Level – Rtc Master 26 

4.2 Design Parts 35 

4.2.1 I2C 35 

4.2.2 Control Processor 38 

4.2.3 Read Processor 41 

4.2.4 Write Processor 45 

4.2.5 Registerset 48 

4.3 Configuration example 51 

4.3.1 Static Configuration 51 

4.3.2 AXI Configuration 51 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 6 of 63 

4.4 Clocking and Reset Concept 52 

4.4.1 Clocking 52 

4.4.2 Reset 52 

5 RESOURCE USAGE 54 

5.1 Intel/Altera (Cyclone V) 54 

5.2 AMD/Xilinx (Artix 7) 54 

6 DELIVERY STRUCTURE 55 

7 TESTBENCH 56 

7.1 Run Testbench 56 

8 REFERENCE DESIGNS 58 

8.1 Intel/Altera: Terasic SocKit 58 

8.2 AMD/Xilinx: Digilent Arty 59 

8.2.1 RTC CLock 60 

8.3 AMD/Xilinx : Vivado version 61 

 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 7 of 63 

Definitions 

Definitions 

RTC Master Clock 
A clock that can synchronize or be synchronized by an 

RTC 

PI Servo Loop 
Proportional–integral servo loop, allows for smooth correc-

tions 

Offset Phase difference between clocks 

Drift Frequency difference between clocks 

Table 2:  Definitions 
 

Abbreviations 

Abbreviations 

AXI AMBA4 Specification (Stream and Memory Mapped) 

IRQ Interrupt, Signaling to e.g. a CPU 

PPS Pulse Per Second 

RTC Real Time Clock 

RM RTC Master 

TS Timestamp 

TB Testbench 

LUT Look Up Table 

FF Flip Flop 

RAM Random Access Memory 

ROM Read Only Memory 

FPGA Field Programmable Gate Array 

VHDL Hardware description Language for FPGA’s 

Table 3:  Abbreviations 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 8 of 63 

1 Introduction 

1.1 Context Overview 

The RTC Master Clock is meant as a co-processor handling an Real Time Clock 

(RTC). It can read and write the RTC registers via I2C and aligns these reads and 

writes aligned to the 1Hz square wave output (RTC PPS) of the RTC. For that, it 

self-configures the RTC to the correct mode at startup and enables the clock. The 

RTC maintains its own time reference also when the FPGA is powered down due to 

its battery backed oscillator. This is especially useful for Systems where the clock 

shall immediately run on a reference at startup and to have absolute time when no 

other synchronization source is available. 

For synchronization, the core takes a snapshot of the local Counter Clock whenev-

er a RTC PPS event happens, reads the seconds part of the time via I2C, converts 

the time from BCD encoded time of day format to binary seconds, calculates the 

offset and drift and adjusts the counter clock. 

The RTC Master Clock is designed to work in cooperation with the Counter Clock 

core from NetTimeLogic (not a requirement). 

In addition to synchronization the core allows to read and write the RTC time via 

registers or signals. For a read it maintains also a nanoseconds part which repre-

sents the time until the time was read and converted since the PPS happens. This is 

useful when the read time is used for comparison, since at the time the valid flag is 

set the whole time (including nanoseconds) is accurate. 

 

 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 9 of 63 

I2C

RtcMasterClockRtcMasterClockRTC

CLOCK
Adjustable Clock

Time

A
X

I4
 L

it
e 

Sl
av

e

CPU

AXI4L

RTC PPS

 

Figure 1:  Context Block Diagram 
 

1.2 Function 

The RTC Master Clock takes a snapshot of the local Counter Clock whenever a RTC 

PPS event of configurable polarity happens, reads the seconds part of the time via 

I2C, converts the time from BCD encoded time of day format to binary seconds, 

calculates the offset and drift and adjusts the counter clock. 

In addition to synchronization the core allows to read and write the RTC time via 

registers or signals. For a write the binary time in seconds/nanoseconds format is 

converted into BCD encoded time of day format and written to the corresponding 

time registers of the RTC via I2C right after the RTC PPS. For a read the corre-

sponding time registers of the RTC are read via I2C right after the RTC PPS and 

decoded from the BCD encoded time of day format into binary time ins sec-

onds/nanoseconds format. The read processor resets the nanosecond counter 

when a RTC PPS event occurs which runs during the reading and encoding, this 

gives nanosecond accuracy when the valid flag of the time is set. 

Alignment with the RTC PPS is done to ensure the time value will not change 

during the I2C access. The RTC updates its time registers at the moment the RTC 

PPS happens. Also the time is always written/read in the order year, month, day, 

hour, minute, seconds. Reading and writing to the RTC can therefore take up to 

one second since it waits for the next RTC PPS to happen before accessing the 

RTC.  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 10 of 63 

1.3 Architecture 

The core is split up into different functional blocks for reduction of the complexity, 

modularity and maximum reuse of blocks. The interfaces between the functional 

blocks are kept as small as possible for easier understanding of the core. 

 

 

CTRL
PROC.

AXI4 Lite Slave

REGISTER
SET

RtcMasterClockRtcMasterClock

CLOCK
Adjustable Clock

A
X

I4
 L

it
e 

Sl
av

e

READ
PROC.

WRITE
PROC.

I2C

I2C
RTC

Clock
RTC PPS

Time &
Adjustment

 

Figure 2:  Architecture Block Diagram 
 

Register Set 

This block allows reading status values and writing configuration. It also enables a 

CPU to read and write the RTC time values. 

 

I2C 

This is the I2C controller converting the internal parallel register access to the serial 

I2C access. There is arbitration between the Read-, Write- and Control-Processor 

which can access the I2C bus. 

 

Control Processor 

This configures the RTC clock at startup to run in the correct mode and to put out 

the 1Hz square wave output. Once ready it releases the Read- and Write-Processor 

 

Read Processor 

This reads the time from the RTC via I2C at the RTC PPS event, converts it to 

binary time, calculates offset and drift and adjusts the clock. 

 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 11 of 63 

Write Processor 

This converts the time to BCD time of day format and writes the time to the RTC 

via I2C at the RTC PPS event. 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 12 of 63 

2 RTC Basics 

2.1 RTC Internals 

A Real Time Clock (RTC) is a battery backed clock running on an local oscillator 

providing the time over register access and square wave output to the user. The 

oscillator frequency is divided to achieve a 1Hz internal signal which is the used for 

incrementing the time. To get sub second accuracy the 1Hz signal has to be 

mapped to the square wave output where the IP core can synchronize itself to by 

adjusting subsecond phase and the clock frequency. 

 

OSC

CLK
DIV

TIME
REG

I2C
CTRL

SQW
CTRL

32.768 kHz

1Hz

SQW

I2C

 

Figure 3:  I2C Waveform 
 

2.2 Interface  

An RTC is commonly connected via an I2C interface. The I2C interface is a simple 

two wire bus containing a data line (SDA) and a clock line (SCL) allowing up to 127 

slaves running at 100 or 400 kHz. The bus is open drain allowing all slaves to pull 

low using pull-ups to get the signals to high. 

There are several access mechanisms defined but the RTC Master Clock described 

here only uses the byte wise access to the registers. 

 

An I2C access consists always of the following parts (in this order):  

• A Start condition (SDA goes from high to low while SC is high, also for re-

peated Start) 

• 8 Data bits (MSB first) 

• An Acknowledge (low for ACK, high for NACK, on write driven by the I2C 

slave, on read by the I2C Master) 

• A Stop condition (SDA goes from low to high while SC is high) 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 13 of 63 

 

BIT 7
MSB

BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT1 BIT0 ACK

START STOP

 

Figure 4:  I2C Waveform 
 

There are three different types of cycles in a byte wise I2C access: 

• A device address cycle 

• A register address cycle 

• A data cycle 

 

For a write the I2C access looks as following: 

START DEVICE ADDR R/W ACK REGISTER ADDR ACK REGISTER WRITE DATA ACK

0

STOP

 

Figure 5:  I2C Write Access 
 

 

For a read the I2C access looks as following: 

START DEVICE ADDR R/W ACK REGISTER ADDR ACK REGISTER READ DATA
NOT
ACK

0

STOP
REP

START
DEVICE ADDR R/W ACK

1

 

Figure 6:  I2C Read Access 
 

For more information on I2C check this link: 

http://www.nxp.com/documents/user_manual/UM10204.pdf  

 

In addition to the I2C interface an RTC normally consists of a square wave output 

which allow to generate different frequencies from the oscillator driving the RTC. 

The frequencies can be set normally to 32.768kHz, 8.192kHz, 4.096kHz and 1Hz. For 

this RTC Master Clock core the square wave output frequency must be set to 1Hz 

(PPS). Setting the frequency is done by the core via I2C during startup. The duty 

cycle of the square wave output is normally set to 50% and the polarity is active 

low. On the falling edge, the internal clock counter values are updated. 

http://www.nxp.com/documents/user_manual/UM10204.pdf


  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 14 of 63 

5
0

0
m

s
D

u
ty

 
cy

cl
e

5
0

0
m

s
D

u
ty

 
cy

cl
e

 

Figure 7:  RTC PPS Waveform 
 

2.3 RTC Registers 

Depending on the RTC used the register set off the RTC differs slightly. What they 

all have in common is the time registers as binary encoded decimal value (BCD) in 

time of year format hh:mm:ss dd:mm:yy format and a control register for the 

squarewave output. To make use of the time in the FPGA and the other cores, the 

time must be converted from time of year in BCD to binary time since midnight 

1.1.1970, taking leap years and into account. 

 

The registersets of the two supported RTCs look as following: 

 

CH SECONDS ONE

MSB
7

LSB
06 5 4 3 2 1

Seconds
0x00

OUT - SQWEN - RS1 RS0

SECONDS TEN ST SECONDS ONE

MSB
7

LSB
06 5 4 3 2 1

SECONDS TEN

- MINUTES ONE
Minutes

0x01
MINUTES TEN - MINUTES ONEMINUTES TEN

- HOURS ONE
Hours
0x02

HOURS TEN

HOUR 
TEN

12/24
AM/PM

- HOURS ONE
HOURS TEN

HOUR 
TEN

12/24
AM/PM

unused
OSC 
RUN

- unused
Week Day

0x03

- DAY ONE
Day

0x04
DAY TEN - DAY ONEDAY TEN

- MONTH  ONE
Day

0x05
MONTH 

TEN
- MONTH ONE

MONTH 
TEN

LEAP
YEAR

YEAR ONE
Years
0x06

YEAR TEN YEAR ONEYEAR TEN

Control
0x07

OUT - SQWEN - RS1 RS0-

1Hz
RS1 = 0
RS0 = 0

1Hz
RS1 = 0
RS0 = 0

MCP7941XDS1307

 

Figure 8:  RTC Registersets 
 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 15 of 63 

2.4 UTC vs TAI time bases 

The RTC clock contains the time of day on TAI base. UTC has an offset to TAI 

which is the time base normally used for the Counter Clock. This time offset has to 

be handled by the user so the local clock can still run on a TAI base. UTC in com-

parison to TAI or GPS time has so called leap seconds. A leap second is an addi-

tional second which is either added or subtracted from the current time to adjust 

for the earth rotation variation over time. Until 2016 UTC had additional 36 leap 

seconds, therefore TAI time is currently 36 seconds ahead of UTC. The issue with 

UTC time is, that the time makes jumps with the leap seconds which may cause 

that synchronized nodes go out of sync for a couple of seconds. Leap seconds are 

normally introduced at midnight of either the 30 of June or 31 of December. For an 

additional leap second the seconds counter of the UTC time will count to 60 before 

wrapping around to zero, for one fewer leap second the UTC second counter will 

wrap directly from 58 to 0 by skipping 59 (this has not happened yet). 

 



  

 

 

  

  

    

 

RtcMaster Reference Manual 1.3  Page 16 of 63 

3 Register Set 

This is the register set of the RTC Master Clock. It is accessible via AXI4Lite Memory Mapped. All registers are 32bit wide, no burst 

access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Register ad-

dresses are only offsets in the memory area where the core is mapped in the AXI inter connects. Non existing register access in the 

mapped memory area is answered with a slave decoding error. 

3.1 Register Overview 

Registerset Overview 

Name Description Offset Access 

Rtc MasterControl Reg Rtc Master Enable Control Register 0x00000000 RW 

Rtc MasterStatus Reg Rtc Master Error Status Register 0x00000004 WC 

Rtc MasterPolarity Reg Rtc Master Polarity Register 0x00000008 RW 

Rtc MasterVersion Reg Rtc Master Version Register 0x0000000C RO 

Rtc MasterTimeReadValueL Reg RTC write Time Nanosecond Register 0x00000010 RO 

Rtc MasterTimeReadValueH Reg RTC write Time Second Register 0x00000014 RO 

Rtc MasterTimeWriteValueL Reg RTC write Time Nanosecond Register 0x00000020 RW 

Rtc MasterTimeWriteValueH Reg RTC write Time Second Register 0x00000024 RW 

Table 4:  Register Set Overview 
 

  



  

 

 

  

  

     

 

RtcMaster Reference Manual 1.3  Page 17 of 63 

3.2 Register Descriptions 

3.2.1 General 

3.2.1.1 RTC Master Control Register 

Used for general control over the RTC Master Clock. To get a new time snapshot the time read flag has to be set and the read done 

flag is asserted as soon as the time is read from the RTC. Since the time values are multi register values, a set flag is available to 

mark validity of the whole value. 

 

Rtc MasterControl Reg 

Reg Description 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

T
IM

E
_
R

E
A

D
_
D

O
N

E
 

T
IM

E
_
R

E
A

D
 

- 

T
IM

E
_
W

R
IT

E
_
V

A
L

 

E
N

A
B

L
E

 

RO RW RO RW RW 

Reset: 0x00000000 

Offset: 0x0000 

                                                                

Name Description Bits Access 

TIME_READ_DONE Time Read done (autocleared) Bit: 31 RO 



  

 

 

  

  

     

 

RtcMaster Reference Manual 1.3  Page 18 of 63 

TIME_READ Time Read (autocleared) Bit: 30 RW 

- Reserved, read 0 Bit: 29:2 RO 

TIME_WRITE_VAL Time Write Valid (autocleared) Bit: 1 RW 

ENABLE Enable Bit: 0 RW 

  



  

 

 

  

  

     

 

RtcMaster Reference Manual 1.3  Page 19 of 63 

3.2.1.2 RTC Master Status Register 

Shows the current status of the RTC Master Clock. Each controller (Read, Write, Ctrl, I2C) has its own error flag. 

 

Rtc MasterStatus Reg 

Reg Description 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

- 

I2
C

_
E

R
R

O
R

 

W
R

IT
E

_
E

R
R

O
R

 

R
E

A
D

_
E

R
R

O
R

 

C
T

R
L

_
E

R
R

O
R

 

RO WC WC WC WC 

Reset: 0x00000000 

Offset: 0x0004 

                                                                

Name Description Bits Access 

- Reserved, read 0 Bit: 21:4 RO 

I2C_ERROR Error (sticky) Bit: 3 WC 

WRITE_ERRO Error (sticky) Bit: 2 WC 

READ_ERROR Error (sticky) Bit: 1 WC 

CTRL_ERROR Error (sticky) Bit: 0 WC 

 
  



  

 

 

  

  

     

 

RtcMaster Reference Manual 1.3  Page 20 of 63 

3.2.1.3 RTC Master Polarity Register 

Used for setting the RTC PPS signal input polarity of the RTC Master Clock, shall only be done when disabled. Default value is set 

by the InputPolarity_Gen generic. 

 

Rtc MasterPolarity Reg 

Reg Description 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

- 

P
O

L
A

R
IT

Y
 

RO RW 

Reset: 0x0000000X 

Offset: 0x0008 

                                                                

Name Description Bits Access 

- Reserved, read 0 Bit:31:1 RO 

POLARITY RTC PSS Signal Polarity (1 active high, 0 active low) Bit: 0 RW 

  



  

 

 

  

  

     

 

RtcMaster Reference Manual 1.3  Page 21 of 63 

3.2.1.4 RTC Master Version Register 

Version of the IP core, even though is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor 

and bits 15 down to 0 the build numbers. 

 

Rtc MasterVersion Reg 

Reg Description 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

V
E

R
S

IO
N

 

RO 

0xXXXXXXXX 

Offset: 0x000C 

                                                                

Name Description Bits Access 

VERSION Version of the core Bit: 31:0 RO 

 

  



  

 

 

  

  

     

 

RtcMaster Reference Manual 1.3  Page 22 of 63 

3.2.1.5 RTC Master Time Read Value Low Register 

Time snapshot value nanosecond part. This represents the number of nanoseconds after the seconds pulse of the RTC when the 

time was converted. This is an internally generated value and not from the RTC. 

 

Rtc MasterTimeReadValueL Reg 

Reg Description 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

T
IM

E
_
N

S
 

RO 

Reset: 0x00000000 

Offset: 0x0010 

                                                                

Name Description Bits Access 

TIME_NS Read Time Nanosecond Bit: 31:0 RO 

 

  



  

 

 

  

  

     

 

RtcMaster Reference Manual 1.3  Page 23 of 63 

3.2.1.6 RTC Master Time Read Value High Register 

Time snapshot value second part. This is the RTC time converted from time of day into seconds when the PPS has happened. Time 

is always read when the RTC PPS has ocured 

 

Rtc MasterTimeReadValueH Reg 

Reg Description 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

T
IM

E
_
S

 

RO 

Reset: 0x00000000 

Offset: 0x0014 

                                                                

Name Description Bits Access 

TIME_S Read Time Second Bit: 31:0 RO 

 

  



  

 

 

  

  

     

 

RtcMaster Reference Manual 1.3  Page 24 of 63 

3.2.1.7 RTC Master Time Write Value Low Register 

Write time nanoseconds part value. This is currently unused.  

 

Rtc MasterTimeWriteValueL Reg 

Reg Description 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

T
IM

E
_
W

R
IT

E
_
N

S
 

RW 

Reset: 0x00000000 

Offset: 0x0020 

                                                                

Name Description Bits Access 

TIME_WRITE_NS OverwriteTime Nanosecond Bit: 31:0 RW 

 

  



  

 

 

  

  

     

 

RtcMaster Reference Manual 1.3  Page 25 of 63 

3.2.1.8 RTC Master Time Write Value High Register 

Write time seconds part value. The time will be written to the Clock at the next RTC PPS event. 

 

Rtc MasterTimeWriteValueH Reg 

Reg Description 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

T
IM

E
_
W

R
IT

E
_
S

 

RW 

Reset: 0x00000000 

Offset: 0x0024 

                                                                

Name Description Bits Access 

TIME_WRITE_S OverwriteTime Second Bit: 31:0 RW 

 

 



  

 

 

   

  

    

 

RtcMaster Reference Manual 1.3  Page 26 of 63 

4 Design Description 

The following chapters describe the internals of the RTC Master Clock: starting with 

the Top Level, which is a collection of subcores, followed by the description of all 

subcores. 

4.1 Top Level – Rtc Master 

4.1.1.1 Parameters 

The core must be parametrized at synthesis time. There are a couple of parameters 

which define the final behavior and resource usage of the core.  

 

Name Type Size Description 

StaticConfig_Gen         boolean 1 
If Static Configuration or AXI 

is used 

RtcClockType_Gen 
Rtc_ClockType_

Type 
1 

DS1307_E or MCP7941x_E are 

supported to define the type 

of RTC connected 

ClockClkPeriod 

Nanosecond_Gen 
natural 1 

Clock Period in Nanosecond: 

Default for 50 MHz = 20 ns 

I2cClkPeriod 

Nanosecond_Gen 
natural 1 

I2C clock Period in Nanosec-

ond: 

Default for 100 kHz = 10000 

ns 

I2cAdress_Gen natural 1 I2C 7 bit address of the RTC 

InputDelay 

Nanosecond_Gen 
natural 1 

Input delay of the PPS from 

the output signal to the con-

nector. 

InputPolarity_Gen boolean  1 
true = high active, false = low 

active  

AxiAddressRange 

Low_Gen 
std_logic_vector 32 

AXI Base Address 

AxiAddressRange 

High_Gen 
std_logic_vector 32 

AXI Base Address plus Regis-

terset Size 

Default plus 0xFFFF 

Sim_Gen boolean  1 
If in Testbench simulation 

mode: 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 27 of 63 

true = Simulation, false = 

Synthesis 

Table 5:  Parameters 
 

4.1.1.2 Structured Types 

4.1.1.2.1 Clk_Time_Type 

Defined in Clk_Package.vhd of library ClkLib 

Type represents the time used everywhere. For this type overloaded operators + 

and – with different parameters exist. 

 

Field Name Type Size Description 

Second std_logic_vector 32 Seconds of time 

Nanosecond std_logic_vector 32 Nanoseconds of time 

Fraction std_logic_vector 2 
Fraction numerator (mostly 

not used) 

Sign std_logic 1 
Positive or negative time, 1 = 

negative, 0 = positive. 

TimeJump std_logic 1 
Marks when the clock makes a 

time jump (mostly not used) 

Table 6:  Clk_Time_Type 
 

4.1.1.2.2 Clk_CoreInfo_Type 

Defined in Clk_Package.vhd of library ClkLib 

This is the type used for getting info about the cores state status. 

 

Field Name Type Size Description 

State 
Clk_CoreState_T

ype 
1 

State of the core: Unknown_E, 

Slave_E or Master_E 

Accuracy std_logic_vector 8 
Accuracy of the core, higher is 

better 

Enabled std_logic 1 If the core is enabled 

InSync std_logic 1 If the core is synchronized 

Error std_logic 1 If the core has an error 

Table 7:  Clk_CoreInfo_Type 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 28 of 63 

 

4.1.1.2.3 Rtc_MasterStaticConfig_Type 

Defined in Rtc_MasterAddrPackage.vhd of library RtcLib 

This is the type used for static configuration. 

 

Field Name Type Size Description 

Polarity std_logic 1 
‘1’ = high active, ‘0’ = low 

active  

WriteTime Clk_Time_Type 1 Time to write 

Table 8:  Rtc_MasterStaticConfig_Type 
 

4.1.1.2.4 Rtc_MasterStaticConfigVal_Type 

Defined in Rtc_MasterAddrPackage.vhd of library RtcLib 

This is the type used for valid flags of the static configuration. 

 

Field Name Type Size Description 

Enable_Val std_logic 1 Enables the PPS Master 

WriteTime_Val std_logic 1 Writes the time 

Table 9:  Rtc_MasterStaticConfigVal_Type 
 

4.1.1.2.5 Rtc_MasterStaticStatus_Type 

Defined in Rtc_MasterAddrPackage.vhd of library RtcLib 

This is the type used for static status supervision. 

 

Field Name Type Size Description 

CoreInfo 
Clk_CoreInfo_ 

Type 
1 

Infor about the Cores state 

ReadTime Clk_Time_Type 1 Read time 

Table 10:  Rtc_MasterStaticConfig_Type 
 

4.1.1.2.6 Rtc_MasterStaticStatusVal_Type 

Defined in Rtc_MasterAddrPackage.vhd of library RtcLib 

This is the type used for valid flags of the static status supervision. 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 29 of 63 

 

Field Name Type Size Description 

CoreInfo_Val std_logic 1 Core Info valid 

ReadTime_Val std_logic 1 Read time valid 

Table 11:  Rtc_MasterStaticConfigVal_Type 
 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 30 of 63 

4.1.1.3 Entity Block Diagram 

 

CTRL
PROC.

REGISTER
SET

Enable

READ
PROC.

WRITE
PROC.

I2C

I2C

I2C
Ctrl

I2C
Ctrl

I2C
Ctrl

RTC PPS

Read
Time

Write
Time

Polarity

AXI MM

Config

Enable

Drift Cor.

Offset Cor.

 

Figure 9:  RTC Master Clock 
 

4.1.1.4 Entity Description 

I2C 

This module is the I2C controller converting the internal parallel register access to 

the serial I2C access. There is arbitration between the Read-, Write- and Control-

Processor which can access the I2C bus. 

See 4.2.1 for more details. 

 

Control Processor 

This module configures the RTC clock at startup to run in the correct mode and to 

put out the 1Hz square wave output. Once ready it releases the Read- and Write-

Processor 

See 4.2.2 for more details. 

 

Read Processor 

This module reads the time from the RTC via I2C at the RTC PPS event, converts it 

to binary time, calculates offset and drift and adjusts the clock. 

See 4.2.3 for more details. 

 

Write Processor 

This module converts the time to BCD time of day format and writes the time to 

the RTC via I2C at the RTC PPS event. 

See 4.2.4 for more details. 

 

Register Set 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 31 of 63 

This module is an AXI4Lite Memory Mapped Slave. It provides access to all regis-

ters and allows configuring the RTC Master Clock. It can be configured to either run 

in AXI or StaticConfig mode. If in StaticConfig mode, the configuration of the 

registers is done via signals and can be easily done from within the FPGA without 

CPU. If in AXI mode, an AXI Master has to configure the registers with AXI writes to 

the registers, which is typically done by a CPU. It also provides a status interface 

which allows similar to the static configuration to supervise the status via signals. 

See 4.2.5 for more details. 

 

4.1.1.5 Entity Declaration 

Name Dir Type Size Description 

Generics 

General 

RtcClockType - Rtc_ClockType_Type 1 

DS1307_E or 

MCP7941x_E are 

supported to define 

the type of RTC 

connected 

StaticConfig_Gen         - boolean 1 
If Static Configura-

tion or AXI is used 

ClockClkPeriod 

Nanosecond_Gen 
- natural 1 

Integer Clock Period 

I2cClkPeriod 

Nanosecond_Gen 
- natural 1 

I2C clock Period in 

Nanosecond: 

Default for 100 kHz 

= 10000 ns 

I2cAdress_Gen - natural 1 
I2C 7 bit address of 

the RTC 

InputDelay 

Nanosecond_Gen 
- natural 1 

Input delay of the 

PPS from the con-

nector to the input 

signal  

InputPolarity_Gen - boolean  1 
True: High active, 

False: Low active  

AxiAddressRange 

Low_Gen 
- std_logic_vector 32 

AXI Base Address 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 32 of 63 

AxiAddressRange 

High_Gen 
- std_logic_vector 32 

AXI Base Address 

plus Registerset 

Size 

Sim_Gen - boolean  1 
If in Testbench 

simulation mode 

Ports 

System 
SysClk_ClkIn      in std_logic 1 System Clock  

SysRstN_RstIn     in std_logic 1 System Reset 

Config 

StaticConfig_DatIn in 
Rtc_Master 

StaticConfig_Type 
1 

Static Configuration  

StaticConfig_ValIn in 

Rtc_Master 

StaticConfigVal 

_Type 

1 

Static Configuration 

valid  

Status 

StaticStatus_DatOut out 
Rtc_Master 

StaticStatus_Type 
1 

Static Status  

StaticStatus_ValOut out 

Rtc_Master 

StaticStatusVal 

_Type 

1 

Static Status valid  

Timer 

Timer1ms_EvtIn    in std_logic 1 

Millisecond timer 

adjusted with the 

Clock 

Time Input 

ClockTime_DatIn    in Clk_Time_Type 1 
Adjusted PTP Clock 

Time 

ClockTime_ValIn    in std_logic 1 
Adjusted PTP Clock 

Time valid 

AXI4 Lite Slave 
AxiWriteAddrValid 
_ValIn   

in std_logic 1 Write Address Valid 

AxiWriteAddrReady 
_RdyOut   

out std_logic 1 
Write Address 

Ready 

AxiWriteAddrAddress 
_AdrIn  

in std_logic_vector 32 Write Address  

AxiWriteAddrProt 
_DatIn    

in std_logic_vector 3 
Write Address 

Protocol 

AxiWriteDataValid 
_ValIn   

in std_logic 1 Write Data Valid 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 33 of 63 

AxiWriteDataReady 
_RdyOut   

out std_logic 1 Write Data Ready 

AxiWriteDataData 
_DatIn    

in std_logic_vector 32 Write Data  

AxiWriteDataStrobe 
_DatIn   

in std_logic_vector 4 Write Data Strobe 

AxiWriteRespValid 
_ValOut   

out std_logic 1 
Write Response 

Valid 

AxiWriteRespReady 
_RdyIn   

in std_logic 1 
Write Response 

Ready 

AxiWriteResp 
Response_DatOut 

out std_logic_vector 2 Write Response 

AxiReadAddrValid 
_ValIn    

in std_logic 1 Read Address Valid 

AxiReadAddrReady 
_RdyOut   

out std_logic 1 
Read Address 

Ready 

AxiReadAddrAddress 
_AdrIn   

in std_logic_vector 32 Read Address  

AxiReadAddrProt 
_DatIn    

in std_logic_vector 3 
Read Address 

Protocol 

AxiReadDataValid 
_ValOut   

out std_logic 1 Read Data Valid 

AxiReadDataReady 
_RdyIn    

in std_logic 1 Read Data Ready 

AxiReadData 
Response_DatOut  

out std_logic_vector 2 Read Data  

AxiReadDataData 
_DatOut    

out std_logic_vector 32 
Read Data Re-

sponse 

I2C Interface 

I2cClk_ClkOut in std_logic 1 I2C clock output 

I2cSda_DatIn in std_logic 1 I2C data input  

I2cSda_DatOut out std_logic 1 I2C data output 

I2cSdaOe_ValOut out std_logic 1 
I2C data output 

enable 

RTC Pulse Per Second Input 

Rtc_EvtIn in std_logic 1 PPS input 

Time Adjustment Output 
TimeAdjustment 
_DatOut out 

Clk_TimeAdjustment

_Type 
1 

Time to set hard 

(unused) 

TimeAdjustment 
_ValOut out std_logic 1 

Time valid 

(unused) 

Offset Adjustment Output 
OffsetAdjustment 
_DatOut 

out 
Clk_TimeAdjustment

_Type 
1 

Calculated new 

Offset between 

Master and Slave 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 34 of 63 

OffsetAdjustment 
_ValOut  out std_logic; 1 

Calculated new 

Offset valid 

Drift Adjustment Output 
DriftAdjustment 
_DatOut 

out 
Clk_TimeAdjustment

_Type 
1 

Calculated new Drift 

between Master and 

Slave 

DriftAdjustment 
_ValOut  out std_logic; 1 

Calculated new Drift 

valid 

Offset Adjustment Input 
OffsetAdjustment 
_DatIn  

in 
Clk_TimeAdjustment

_Type 
1 

Calculated new 

Offset after the PI 

Servo loop 

OffsetAdjustment 
_ValIn    

in std_logic; 1 

Calculated new 

Offset after the PI 

Servo loop valid 

Drift Adjustment Input 
DriftAdjustment 
_DatIn 

in 
Clk_TimeAdjustment

_Type 
1 

Calculated new Drift 

after the PI Servo 

loop 

DriftAdjustment 
_ValIn 

in std_logic 1 

Calculated new Drift 

after the PI Servo 

loop valid 

Table 12:  RTC Master Clock 
 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 35 of 63 

4.2 Design Parts 

The RTC Master Clock core consists of a couple of subcores. Each of the subcores 

itself consist again of smaller function block. The following chapters describe these 

subcores and their functionality.  

4.2.1 I2C 

4.2.1.1 Entity Block Diagram 

 

I2C
SCL

I2C

Error

I2C
SDA

I2C
Ctrl

 

Figure 10:  I2C 
 

4.2.1.2 Entity Description 

I2C 

This module handles the I2C interface it uses the control signals from the parallel 

register interface and converts it into an I2C access. Via the register control inter-

face the device address, the register address, read or write data and a read/write 

flag can be set.  

 

The I2C module then creates the following I2C access cycles: 

START DEVICE ADDR R/W ACK REGISTER ADDR ACK REGISTER WRITE DATA ACK

0

STOP

 

Figure 11:  I2C Write Access 
 

START DEVICE ADDR R/W ACK REGISTER ADDR ACK REGISTER READ DATA
NOT
ACK

0

STOP
REP

START
DEVICE ADDR R/W ACK

1

 

Figure 12:  I2C Read Access 
 

The module also supervises and creates the ACK signals and state and signals an 

error if not correct. 

Once the access is completed it signals this to the Control-, Read- or Write-

Processor, which will then start another register access until all bytes are handled. 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 36 of 63 

 

The I2C controller only supports single byte access, no continuous read or block 

read or write. This is not the highest performance mechanism but the simplest and 

least resource consuming mechanism, which is perfectly fine since no high perfor-

mance or throughput is required. 

 

4.2.1.3 Entity Declaration 

Name Dir Type Size Description 

Generics 

General 
ClockClkPeriod 

Nanosecond_Gen 
- natural  1 

Clock Period in 

Nanosecond 

I2C 

I2cClkPeriod 

Nanosecond_Gen 
- natural 1 

I2C clock Period in 

Nanosecond: 

Default for 100 kHz 

= 10000 ns 

Ports 

System 
SysClk_ClkIn      in std_logic 1 System Clock  

SysRstN_RstIn     in std_logic 1 System Reset 

I2C Interface 
Clk_ClkOut out std_logic 1 I2C Clock Output 

Sda_DatIn in std_logic 1 I2C Data Input 

Sda_DatOut out std_logic 1 I2C Data Output 

SdaOe_ValOut out std_logic 1 I2C Data Output 

enable 

I2C Control Interface 
ReadWrite_DatIn in std_logic 1 ‘1’: Write,  

‘0’: Read  

WriteData_DatIn in std_logic_vector 8 Write Data 

ReadData_DatOut out std_logic_vector 8 Read Data 

ChipAddress_AdrIn in std_logic_vector 7 I2C 7 bit RTC  

address 

RegAddress_AdrIn in std_logic_vector 8 Register address 

Access_ErrOut out std_logic 1 I2C error 

Access_ValIn in std_logic 1 Do Access 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 37 of 63 

Access_ValOut out std_logic 1 Access done 

Table 13:  I2C 
 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 38 of 63 

4.2.2 Control Processor 

4.2.2.1 Entity Block Diagram 

 

RTC PPS
CTRL

PROC.
Enable

Time

Polarity

Enable

I2C
Ctrl

 

Figure 13:  Control Processor 
 

4.2.2.2 Entity Description 

Control Processor 

This module configures and enables the RTC on startup. It sets the correct fre-

quency of 1Hz on the square wave output and puts the RTC in a mode where it 

continuously runs (also in battery holdover mode). Once enabled it waits for a 

second and one RTC PPS event before releasing the Read- and Write-Processor. 

This is done this way to ensure the Read- and Write Processor start at a second 

boundary. This procedure repeats when the core is disabled and reenabled. 

Once enabled the Control Processor stays silent. 

4.2.2.3 Entity Declaration 

Name Dir Type Size Description 

Generics 

General 

RtcClockType - Rtc_ClockType_Type 1 

DS1307_E or 

MCP7941x_E are 

supported to define 

the type of RTC 

connected 

ClockClkPeriod 

Nanosecond_Gen 
- natural  1 

Clock Period in 

Nanosecond 

Sim_Gen - boolean  1 
If in Testbench 

simulation mode 

Control Processor 
InputDelay 

Nanosecond_Gen 
- natural 1 

Input delay of the 

PPS from the con-



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 39 of 63 

nector to the input 

signal  

Ports 

System 
SysClk_ClkIn      in std_logic 1 System Clock  

SysRstN_RstIn     in std_logic 1 System Reset 

Timer 

Timer1ms_EvtIn    in std_logic 1 

Millisecond timer 

adjusted with the 

Clock 

Time Input 

ClockTime_DatIn    in Clk_Time_Type 1 
Adjusted PTP Clock 

Time 

ClockTime_ValIn    in std_logic 1 
Adjusted PTP Clock 

Time valid 

RTC Pulse Per Second Polarity 

RtcPolarity_DatIn in std_logic 10 
‘1’: High active,  

‘0’: Low active  

RTC Pulse Per Second Input 

Rtc_EvtIn in std_logic 1 PPS input 

RTC Error Output 

Rtc_ErrOut out std_logic 1 
Indicates an access 

error 

I2C Control Interface 
ReadWrite_DatOut out std_logic 1 ‘1’: Write,  

‘0’: Read  

WriteData_DatOut out std_logic_vector 8 Write Data 

ReadData_DatIn in std_logic_vector 8 Read Data 

ChipAddress_AdrOut out std_logic_vector 7 I2C 7 bit RTC  

address 

RegAddress_AdrOut out std_logic_vector 8 Register address 

AccessReq_ValOut out std_logic 1 Request I2C access 

AccessAck_ValIn in  std_logic 1 I2C Access granted 

Access_ErrIn in  std_logic 1 I2C error 

Access_ValOut out std_logic 1 Do Access 

Access_ValIn in std_logic 1 Access done 

Enable Input 

Enable_EnaIn in std_logic 1 
Enables the configu-

ration of the RTC 

Enable Output 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 40 of 63 

Enable_EnaOut out std_logic 1 
Enables the other 

processors 

Table 14:  Control Processor 
 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 41 of 63 

4.2.3 Read Processor 

4.2.3.1 Entity Block Diagram 

 

RTC PPS
READ
PROC.

Enable

Read Time

Polarity
I2C
Ctrl

ADJ
CALC

Time

Drift Cor.

Offset Cor.

 

Figure 14:  Read Processor 
 

4.2.3.2 Entity Description 

Read Processor 

This module reads the time when the RTC PPS event is detected. A timestamp of 

the local clock is taken at this event and a nanosecond counter reset, both taking 

input delays into account. At this event it starts to read the years part first and 

reads all registers one by one until the seconds part. Then it decodes the BCD 

encoded register values into straight binary values. After that it converts the 

straight binary values of the time in time of day format into time in seconds since 

midnight 1.1.1970 (TAI) taking leap years into account. Last the nanosecond coun-

ter, which was reset at the RTC PPS event, is merged with the just decoded second 

part and the Read Time is validated. Before the nanosecond counter is merged 

with the decoded seconds value the time is passed to the Adjustment Calculator 

module together with the timestamp taken at the RTC PPS event for offset and 

drift calculation. The two values passed, represent the two times of the two clocks 

at the same moment in time and can therefore be used for comparison.  

This mechanism guarantees that the time is always valid since the RTC only up-

dates its time once a second and the read of individual registers hall not happen 

during an update cycle, but on the other hand this also only allows to update the 

time once a second. 

 

Adjustment Calculator 

This module calculates the drift and offset of the local clock against the RTC time 

and corrects it. After enabling or error detection the calculation waits for two 

consecutive time reads of the Read Processor before adjusting the clock again.  

 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 42 of 63 

4.2.3.3 Entity Declaration 

Name Dir Type Size Description 

Generics 

General 

RtcClockType - Rtc_ClockType_Type 1 

DS1307_E or 

MCP7941x_E are 

supported to define 

the type of RTC 

connected 

ClockClkPeriod 

Nanosecond_Gen 
- natural  1 

Clock Period in 

Nanosecond 

Sim_Gen - boolean  1 
If in Testbench 

simulation mode 

Read Processor 

InputDelay 

Nanosecond_Gen 
- natural 1 

Input delay of the 

PPS from the con-

nector to the input 

signal  

Ports 

System 
SysClk_ClkIn      in std_logic 1 System Clock  

SysRstN_RstIn     in std_logic 1 System Reset 

Timer 

Timer1ms_EvtIn    in std_logic 1 

Millisecond timer 

adjusted with the 

Clock 

Time Input 

ClockTime_DatIn    in Clk_Time_Type 1 
Adjusted PTP Clock 

Time 

ClockTime_ValIn    in std_logic 1 
Adjusted PTP Clock 

Time valid 

RTC Pulse Per Second Polarity 

RtcPolarity_DatIn in std_logic 10 
‘1’: High active,  

‘0’: Low active  

RTC Pulse Per Second Input 

Rtc_EvtIn in std_logic 1 PPS input 

RTC Error Output 

Rtc_ErrOut out std_logic 1 
Indicates an access 

error 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 43 of 63 

RTC Read Time Output 

ReadTime_DatOut out Clk_Time_Type 1 RTC Read Time 

ReadTime_ValOut out std_logic 1 
RTC Read Time 

valid 

Offset Adjustment Output 
OffsetAdjustment 
_DatOut 

out 
Clk_TimeAdjustment

_Type 
1 

Calculated new 

Offset between 

Master and Slave 

OffsetAdjustment 
_ValOut  out std_logic; 1 

Calculated new 

Offset valid 

Drift Adjustment Output 
DriftAdjustment 
_DatOut 

out 
Clk_TimeAdjustment

_Type 
1 

Calculated new Drift 

between Master and 

Slave 

DriftAdjustment 
_ValOut  out std_logic; 1 

Calculated new Drift 

valid 

Offset Adjustment Input 
OffsetAdjustment 
_DatIn  

in 
Clk_TimeAdjustment

_Type 
1 

Calculated new 

Offset after the PI 

Servo loop 

OffsetAdjustment 
_ValIn    

in std_logic; 1 

Calculated new 

Offset after the PI 

Servo loop valid 

Drift Adjustment Input 
DriftAdjustment 
_DatIn 

in 
Clk_TimeAdjustment

_Type 
1 

Calculated new Drift 

after the PI Servo 

loop 

DriftAdjustment 
_ValIn 

in std_logic 1 

Calculated new Drift 

after the PI Servo 

loop valid 

I2C Control Interface 
ReadWrite_DatOut out std_logic 1 ‘1’: Write,  

‘0’: Read  

WriteData_DatOut out std_logic_vector 8 Write Data 

ReadData_DatIn in std_logic_vector 8 Read Data 

ChipAddress_AdrOut out std_logic_vector 7 I2C 7 bit RTC  

address 

RegAddress_AdrOut out std_logic_vector 8 Register address 

AccessReq_ValOut out std_logic 1 Request I2C access 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 44 of 63 

AccessAck_ValIn in  std_logic 1 I2C Access granted 

Access_ErrIn in  std_logic 1 I2C error 

Access_ValOut out std_logic 1 Do Access 

Access_ValIn in std_logic 1 Access done 

Enable Input 

Enable_EnaIn in std_logic 1 

Enables the reading 

of the RTC and 

Clock adjustment 

Table 15:  Read Processor 
 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 45 of 63 

4.2.4 Write Processor 

4.2.4.1 Entity Block Diagram 

 

RTC PPS
WRITE
PROC.

Enable

Write Time

Polarity
I2C
Ctrl

 

Figure 15:  Write Processor 
 

4.2.4.2 Entity Description 

Write Processor 

This module writes the time when the RTC PPS event is detected and a write time 

request is pending. At this event it starts to convert the time in seconds since 

midnight 1.1.1970 (TAI) into straight binary values in the time of day format. Then it 

encodes the straight binary values into BCD encoded values. After that it writes the 

BCD encoded values to the RTC by writing the years part first and writing all regis-

ters one by one until the seconds part.  

This mechanism guarantees that the time is always valid when written and the RTC 

updates after the write, but on the other hand this also only allows to update the 

time once a second. When the time shall be written, an extra second shall be added 

to the time and the write command shall be also set before and aligned with the 

next RTC PPS event, this guarantees that the right second is written since RTC also 

updates its only once a second and a write to the individual registers shall not 

happen during an update cycle. 

 

4.2.4.3 Entity Declaration 

Name Dir Type Size Description 

Generics 

General 

RtcClockType - Rtc_ClockType_Type 1 

DS1307_E or 

MCP7941x_E are 

supported to define 

the type of RTC 

connected 

ClockClkPeriod - natural  1 Clock Period in 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 46 of 63 

Nanosecond_Gen Nanosecond 

Sim_Gen - boolean  1 
If in Testbench 

simulation mode 

Write Processor 

InputDelay 

Nanosecond_Gen 
- natural 1 

Input delay of the 

PPS from the con-

nector to the input 

signal  

Ports 

System 

SysClk_ClkIn      in std_logic 1 System Clock  

SysRstN_RstIn     in std_logic 1 System Reset 

Timer 

Timer1ms_EvtIn    in std_logic 1 

Millisecond timer 

adjusted with the 

Clock 

Time Input 

ClockTime_DatIn    in Clk_Time_Type 1 
Adjusted PTP Clock 

Time 

ClockTime_ValIn    in std_logic 1 
Adjusted PTP Clock 

Time valid 

RTC Pulse Per Second Polarity 

RtcPolarity_DatIn in std_logic 10 
‘1’: High active,  

‘0’: Low active  

RTC Pulse Per Second Input 

Rtc_EvtIn in std_logic 1 PPS input 

RTC Error Output 

Rtc_ErrOut out std_logic 1 
Indicates an access 

error 

RTC Write Time Input 

WriteTime_DatIn in Clk_Time_Type 1 RTC Write Time 

WriteTime_ValIn in std_logic 1 
RTC Write Time 

valid 

RTC Time Adjustment Input 
TimeAdjustment 
_DatIn in 

Clk_TimeAdjustment

_Type 
1 

Time to set hard  

TimeAdjustment 
_ValIn 

in std_logic 1 Time valid 

I2C Control Interface 
ReadWrite_DatOut out std_logic 1 ‘1’: Write,  

‘0’: Read  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 47 of 63 

WriteData_DatOut out std_logic_vector 8 Write Data 

ReadData_DatIn in std_logic_vector 8 Read Data 

ChipAddress_AdrOut out std_logic_vector 7 I2C 7 bit RTC  

address 

RegAddress_AdrOut out std_logic_vector 8 Register address 

AccessReq_ValOut out std_logic 1 Request I2C access 

AccessAck_ValIn in  std_logic 1 I2C Access granted 

Access_ErrIn in  std_logic 1 I2C error 

Access_ValOut out std_logic 1 Do Access 

Access_ValIn in std_logic 1 Access done 

Enable Input 

Enable_EnaIn in std_logic 1 
Enables the writing 

of the RTC 

Table 16:  Write Processor 
  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 48 of 63 

4.2.5 Registerset 

4.2.5.1 Entity Block Diagram 

 

ErrorREGISTER
SETStatic Config

AXI MM

Enable

Write Time

Polarity

Static Status Read Time

 

Figure 16:  Registerset 
 

4.2.5.2 Entity Description 

Register Set 

This module is an AXI4Lite Memory Mapped Slave. It provides access to all regis-

ters and allows configuring the RTC Master Clock. AXI4Lite only supports 32 bit 

wide data access, no byte enables, no burst, no simultaneous read and writes and 

no unaligned access. It can be configured to either run in AXI or StaticConfig mode. 

If in StaticConfig mode, the configuration of the registers is done via signals and 

can be easily done from within the FPGA without CPU. For each parameter a valid 

signal is available, the enable signal shall be set last (or simultaneously). To change 

configuration parameters the clock has to be disabled and enabled again, the time 

can be changed at runtime. If in AXI mode, an AXI Master has to configure the 

registers with AXI writes to the registers, which is typically done by a CPU. Parame-

ters can in this case also be changed at runtime. 

For status supervision, similar to the static configuration the static status signals 

are available which allows to use the values also directly from within the FPGA 

without CPU. 

 

4.2.5.3 Entity Declaration 

Name Dir Type Size Description 

Generics 

General 

InputPolarity_Gen - boolean  1 
True: High active, 

False: Low active  

Register Set 
StaticConfig_Gen         - boolean 1 If Static Configura-



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 49 of 63 

tion or AXI is used 

AxiAddressRange 

Low_Gen 
- std_logic_vector 32 

AXI Base Address 

AxiAddressRange 

High_Gen 
- std_logic_vector 32 

AXI Base Address 

plus Registerset 

Size 

Ports 

System 
SysClk_ClkIn in std_logic 1 System Clock  

SysRstN_RstIn  in std_logic 1 System Reset 

Config 

StaticConfig_DatIn in 
Rtc_Master 

StaticConfig_Type 
1 

Static Configuration  

StaticConfig_ValIn in 

Rtc_Master 

StaticConfigVal 

_Type 

1 

Static Configuration 

valid  

Status 

StaticStatus_DatOut out 
Rtc_Master 

StaticStatus_Type 
1 

Static Status  

StaticStatus_ValOut out 

Rtc_Master 

StaticStatusVal 

_Type 

1 

Static Status valid  

AXI4 Lite Slave 
AxiWriteAddrValid 
_ValIn   

in std_logic 1 Write Address Valid 

AxiWriteAddrReady 
_RdyOut   

out std_logic 1 
Write Address 

Ready 

AxiWriteAddrAddress 
_AdrIn  

in std_logic_vector 32 Write Address  

AxiWriteAddrProt 
_DatIn    

in std_logic_vector 3 
Write Address 

Protocol 

AxiWriteDataValid 
_ValIn   

in std_logic 1 Write Data Valid 

AxiWriteDataReady 
_RdyOut   

out std_logic 1 Write Data Ready 

AxiWriteDataData 
_DatIn    

in std_logic_vector 32 Write Data  

AxiWriteDataStrobe 
_DatIn   

in std_logic_vector 4 Write Data Strobe 

AxiWriteRespValid 
_ValOut   

out std_logic 1 
Write Response 

Valid 

AxiWriteRespReady 
_RdyIn   

in std_logic 1 
Write Response 

Ready 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 50 of 63 

AxiWriteResp 
Response_DatOut 

out std_logic_vector 2 Write Response 

AxiReadAddrValid 
_ValIn    

in std_logic 1 Read Address Valid 

AxiReadAddrReady 
_RdyOut   

out std_logic 1 
Read Address 

Ready 

AxiReadAddrAddress 
_AdrIn   

in std_logic_vector 32 Read Address  

AxiReadAddrProt 
_DatIn    

in std_logic_vector 3 
Read Address 

Protocol 

AxiReadDataValid 
_ValOut   

out std_logic 1 Read Data Valid 

AxiReadDataReady 
_RdyIn    

in std_logic 1 Read Data Ready 

AxiReadData 
Response_DatOut  

out std_logic_vector 2 Read Data  

AxiReadDataData 
_DatOut    

out std_logic_vector 32 
Read Data Re-

sponse 

RTC Pulse Per Second Polarity 

RtcPolarity_DatOut out std_logic 10 
‘1’: High active,  

‘0’: Low active  

Pulse Per Second Error Input 

Rtc_ErrIn in std_logic_vector 4 
Indicates a time 

jump 

Read Time Input 

ReadTime_DatIn in Clk_Time_Type 1 RTC Read Time 

ReadTime_ValIn in std_logic 1 
RTC Read Time 

valid 

Write Time Output 

WriteTime_DatOut out Clk_Time_Type 1 RTC Write Time 

WriteTime_ValOut out std_logic 1 
RTC Write Time 

valid 

Enable Output 

RtcMaster 
Enable_DatOut 

out std_logic 1 
Enables the RTC 

core 

Table 17:  Registerset 
 
  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 51 of 63 

4.3 Configuration example 

In both cases the enabling of the core shall be done last, after or together with the 

configuration. 

4.3.1 Static Configuration 

  constant RtcStaticConfigMaster_Con : Rtc_MasterStaticConfig_Type := ( 

    Polarity                     => '1', 

    WriteTime           => ( 

      Second             => x"12345678", -- seconds 

      Nanosecond         => (others => '0'), -- no nanoseconds 

      Fraction           => (others => '0'), -- no fractions 

      Sign               => '0', -- UTC correct in positive 

      TimeJump           => '0'),  

  );  

   

  constant RtcStaticConfigValMaster_Con : Rtc_MasterStaticConfigVal_Type := ( 

    Enable_Val                   => '1' 

    WriteTime_Val                   => '1' 

  ); 

Figure 17:  Static Configuration 
 
The time can be written at runtime. 

4.3.2 AXI Configuration 

The following code is a simplified pseudocode from the testbench: The base ad-
dress of the RTC Master Clock is 0x10000000. 
 
-- RTC MASTER 

-- Config 

-- enable RTC Master 

AXI WRITE 10000000 00000001 

-- write time 

AXI AXI0 WRITE 10000024 12345678 

AXI AXI0 WRITE 10000000 00000003 

Figure 18:  AXI Configuration 
 
In the example the core is enabled and the time written. 
  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 52 of 63 

 

4.4 Clocking and Reset Concept 

4.4.1 Clocking 

To keep the design as robust and simple as possible, the whole RTC Master Clock, 

including the Counter Clock and all other cores from NetTimeLogic are run in one 

clock domain. This is considered to be the system clock. Per default this clock is 

50MHz. Where possible also the interfaces are run synchronous to this clock. For 

clock domain crossing asynchronous fifos with gray counters or message patterns 

with meta-stability flip-flops are used. Clock domain crossings for the AXI interface 

is moved from the AXI slave to the AXI interconnect. 

 

Clock Frequency Description 

System 

System Clock 
50MHz  

(Default) 

System clock where the RTC Master runs 

on as well as the counter clock etc. 

AXI Interface 

AXI Clock 
50MHz  

(Default) 

Internal AXI bus clock, same as the 

system clock 

I2C Interface 

I2C Clock 
100kHz 

(Default) 

I2C clock generated out of the system 

clock 

Table 18:  Clocks 
 

4.4.2 Reset 

In connection with the clocks, there is a reset signal for each clock domain. All 

resets are active low. All resets can be asynchronously set and shall be synchro-

nously released with the corresponding clock domain. All resets shall be asserted 

for the first couple (around 8) clock cycles. All resets shall be set simultaneously 

and released simultaneously to avoid overflow conditions in the core. See the 

reference designs top file for an example of how the reset shall be handled. 

 

Reset Polarity Description 

System 

System Reset Active low 
Asynchronous set, synchronous release 

with the system clock 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 53 of 63 

AXI Interface 

AXI Reset Active low 

Asynchronous set, synchronous release 

with the AXI clock, which is the same as 

the system clock 

Table 19:  Resets 
  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 54 of 63 

5 Resource Usage 

Since the FPGA Architecture between vendors and FPGA families differ there is a 

split up into the two major FPGA vendors. 

5.1 Intel/Altera (Cyclone V) 

Configuration FFs LUTs BRAMs DSPs 

Minimal  

(Static config) 
1830 5831 0 0 

Maximal  

(AXI config) 
1972 5943 0 0 

Table 20:  Resource Usage Intel/Altera 
 

5.2 AMD/Xilinx (Artix 7) 

Configuration FFs LUTs BRAMs DSPs 

Minimal  

(Static config) 
1789 6552 0 0 

Maximal  

(AXI config) 
1927 6713 0 0 

Table 21:  Resource Usage AMD/Xilinx 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 55 of 63 

6 Delivery Structure 

AXI     -- AXI library folder 

 |-Library    -- AXI library component sources 

 |-Package    -- AXI library package sources 

 

CLK     -- CLK library folder 

 |-Library    -- CLK library component sources 

 |-Package    -- CLK library package sources 

 

COMMON     -- COMMON library folder 

 |-Library    -- COMMON library component sources 

 |-Package    -- COMMON library package sources 

 

RTC     -- RTC library folder 

|-Core     -- RTC library cores 

 |-Doc     -- RTC library cores documentations 

 |-Library    -- RTC library component sources 

 |-Package    -- RTC library package sources 

 |-Refdesign    -- RTC library cores reference designs 

 |-Testbench    -- RTC library cores testbench sources and sim/log 

 

SIM     -- SIM library folder 

 |-Doc     -- SIM library command documentation 

 |-Package    -- SIM library package sources 

 |-Testbench    -- SIM library testbench template sources 

 |-Tools    -- SIM simulation tools 

 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 56 of 63 

7 Testbench 

The RTC Master testbench consist of 3 parse/port types: AXI, CLK and RTC. 

The RTC Slave port takes the time of the CLK port instance as initial reference, this 

can be overwritten by the ip core. The RTC Slave has an internal RTC shadow 

register set which the core can read and write via I2C. The RTC Slave port runs an 

internal clock which runs with the frequency of the CLK port and generates the 

RTC PPS event if enabled. 

In addition for configuration and result checks an AXI read and write port is used in 

the testbench and for accessing more than one AXI slave also an AXI interconnect 

is required.  

 

AXI0
AXI

READ
PORT

AXI
PARSER

AXI
INTERC.

RTC
Master
(DUT)

AXI0
AXI

WRITE
PORTSIM

LOG

GENERAL
PARSER

CLK
CLOCK

Time

RTC
PARSER

CLK
PARSER

RTC0
RTC

SLAVE
PORT

RTC0
CLK

PORT

RTC PPS

I2C

 H 

 

Figure 19:  Testbench Framework 
 

For more information on the testbench framework check the Sim_ReferenceManual 

documentation. 

 

With the Sim parameter set the time base for timeouts are divided by 1000 to 

100000 to speed up simulation time. 

7.1 Run Testbench 

1. Run the general script first 

source XXX/SIM/Tools/source_with_args.tcl 

 

2. Start the testbench with all test cases 

src XXX/RTC/Testbench/Core/RtcMaster/Script/run_Rtc_Master_Tb.tcl 

 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 57 of 63 

3. Check the log file LogFile1.txt in the XXX/RTC/Testbench/Core/RtcMaster/Log/ 

folder for simulation results. 

 

  



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 58 of 63 

8 Reference Designs 

The RTC Master reference design contains a PLL to generate all necessary clocks 

(cores are run at 50 MHz), an instance of the RTC Master Clock IP core and an 

instance of the Adjustable Counter Clock IP core (needs to be purchased separate-

ly). The Reference Design is intended to be connected to a DS1307 or MCP7941x 

(or compatible) Real Time Clocks (RTC) which has an I2C interface, a 1Hz square 

wave output and a compatible register set of one of the RTC types supported. 

Optionally it also contains an instance of a PPS Master Clock IP core (has to be 

purchased separately). To instantiate the optional IP core, change the correspond-

ing generic (PpsMasterAvailable_Gen) to true via the tool specific wizards. 

The Reference Design is intended to run just standalone, show the instantiation and 

generate a PPS output. The PPS Master Clock is used to create a PPS output which 

is compensated for the output delay and has a configurable duty cycle, if not 

available an uncompensated PPS is directly generated out of the MSB of the Time. 

All generics can be adapted to the specific needs.  

 

CLOCK
Adjustable Clock

AXI4 Lite Slave

Time &
Timer

RtcRefDesignRtcRefDesign

RTC
Master

AXI4 Lite Slave

PLL

Offset &
 Drift

Adjustment
I2C

RTC PPS

PPS
PPS
Master

AXI4 Lite Slave

 

Figure 20:  Reference Design 
 

8.1 Intel/Altera: Terasic SocKit 

The SocKit board is an FPGA board from Terasic Inc. with a Cyclone V SoC FPGA 

from Intel/Altera. (http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=205&No=816)  

 

1. Open Quartus 16.x 

2. Open Project /RTC/Refdesign/Altera/SocKit/RtcMaster/RtcMaster.qpf 

3. If the optional core PPS Master Clock is available add the files from the cor-

responding folders (PPS/Core, PPS/Library and PPS/Package) 

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816


  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 59 of 63 

4. Change the generics (PpsMasterAvailable_Gen) in Quartus (in the settings 

menu, not in VHDL) to true for the optional cores that are available.  

5. Rerun implementation 

6. Download to FPGA via JTAG 

 

 

Figure 21:  SocKit (source Terasic Inc) 
 

For the ports on the HSMC connector the GPIO to HSMC adapter from Terasic Inc. 

was used. 

 

8.2 AMD/Xilinx: Digilent Arty 

The Arty board is an FPGA board from Digilent Inc. with an Artix7 FPGA from 

AMD/Xilinx. (http://store.digilentinc.com/arty-board-artix-7-fpga-development-

board-for-makers-and-hobbyists/) 

 

1. Open Vivado 2019.1 

Note: If a different Vivado version is used, see chapter 8.3. 

2. Run TCL script /RTC/Refdesign/Xilinx/Arty/RtcMaster/RtcMaster.tcl 

a. This has to be run only the first time and will create a new Vivado Pro-

ject 

PPS-LED InSync-LED Alive-LED Soft Reset 

I2C and PPS  

on HSMC 

http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/
http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/


  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 60 of 63 

3. If the project has been created before open the project and do not rerun the 

project TCL 

4. If the optional core PPS Master Clock is available add the files from the cor-

responding folders (PPS/Core, PPS/Library and PPS/Package) to the corre-

sponding Library (PpsLib). 

5. Change the generics (PpsMasterAvailable_Gen) in Vivado (in the settings 

menu, not in VHDL) to true for the optional cores that are available.  

6. Rerun implementation 

7. Download to FPGA via JTAG 

 

Figure 22:  Arty (source Digilent Inc)  

8.2.1 RTC CLock 

The RTC Clock used in the reference design is a PMOD RTC from Digilent Inc. 

(http://store.digilentinc.com/pmod-rtcc-real-time-clock-calendar) which can be 

directly connected to the PMOD JA on the Arty. The RTC PPS has to be connected 

via a cable from the pinheader of the PMOD RTC to the pin on the upper row of 

PMOD JA next to the SCL (See Figure 22: ) 

The RTC needs an additional battery to be able to update the time when the board 

is powered down. 

 

PPS-LED InSync-LED Alive-LED Soft Reset 

PPS output 

RTC PPS input SDA SCL 

http://store.digilentinc.com/pmod-rtcc-real-time-clock-calendar


  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 61 of 63 

   

Figure 23:  PMOD RTC (source Digilent Inc) 
 

8.3 AMD/Xilinx : Vivado version 

The provided TCL script for creation of the reference-design project is targeting 

AMD/Xilinx Vivado 2019.1.  

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or 

higher.  

If a higher Vivado version is used, the following steps are recommended: 

• Before executing the project creation TCL script, the script's references of 

Vivado 2019 should be manually replaced to the current Vivado version. For 

example, if version Vivado 2022 is used, then:  

o The statement occurrences:  

set_property flow "Vivado Synthesis 2019" $obj  

shall be replaced by: 

set_property flow "Vivado Synthesis 2022 $obj 

o The statement occurrences: 

set_property flow "Vivado Implementation 2019" $obj 

shall be replaced by: 

set_property flow "Vivado Implementation 2022" $obj 

• After executing the project creation TCL script, the AMD/Xilinx IP cores, 

such as the Clocking Wizard core, might be locked and a version upgrade 

might be required. To do so:  

1. At "Reports" menu, select "Report IP Status".  

2. At the opened "IP Status" window, select "Upgrade Selected". The tool 

will upgrade the version of the selected IP cores. 

 

SDA 

SCL 

RTC PPS Output 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 62 of 63 

A List of tables 

Table 1: Revision History ......................................................................................................................4 

Table 2: Definitions .................................................................................................................................. 7 

Table 3: Abbreviations .......................................................................................................................... 7 

Table 4: Register Set Overview ...................................................................................................... 16 

Table 5: Parameters ............................................................................................................................. 27 

Table 6: Clk_Time_Type .................................................................................................................... 27 

Table 7: Clk_CoreInfo_Type ............................................................................................................ 27 

Table 8: Rtc_MasterStaticConfig_Type ..................................................................................... 28 

Table 9: Rtc_MasterStaticConfigVal_Type .............................................................................. 28 

Table 10: Rtc_MasterStaticConfig_Type ..................................................................................... 28 

Table 11: Rtc_MasterStaticConfigVal_Type .............................................................................. 29 

Table 12: RTC Master Clock ............................................................................................................... 34 

Table 13: I2C ............................................................................................................................................... 37 

Table 14: Control Processor .............................................................................................................. 40 

Table 15: Read Processor .................................................................................................................... 44 

Table 16: Write Processor ................................................................................................................... 47 

Table 17: Registerset ............................................................................................................................. 50 

Table 18: Clocks ....................................................................................................................................... 52 

Table 19: Resets ....................................................................................................................................... 53 

Table 20: Resource Usage Intel/Altera .................................................................................... 54 

Table 21: Resource Usage AMD/Xilinx ......................................................................................... 54 

 

B List of figures 

Figure 1: Context Block Diagram ...................................................................................................... 9 

Figure 2: Architecture Block Diagram ........................................................................................... 10 

Figure 3: I2C Waveform ........................................................................................................................ 12 

Figure 4: I2C Waveform ................................................................................................................... 13 

Figure 5: I2C Write Access .................................................................................................................. 13 

Figure 6: I2C Read Access ................................................................................................................... 13 

Figure 7: RTC PPS Waveform ........................................................................................................... 14 

Figure 8: RTC Registersets .................................................................................................................. 14 

Figure 9: RTC Master Clock ............................................................................................................... 30 

Figure 10: I2C .......................................................................................................................................... 35 

Figure 11: I2C Write Access ............................................................................................................ 35 

Figure 12: I2C Read Access ............................................................................................................. 35 



  

 

 

   

  

     

 

RtcMaster Reference Manual 1.3  Page 63 of 63 

Figure 13: Control Processor .......................................................................................................... 38 

Figure 14: Read Processor ................................................................................................................ 41 

Figure 15: Write Processor .............................................................................................................. 45 

Figure 16: Registerset ........................................................................................................................ 48 

Figure 17: Static Configuration ....................................................................................................... 51 

Figure 18: AXI Configuration ........................................................................................................... 51 

Figure 19: Testbench Framework ................................................................................................ 56 

Figure 20: Reference Design ........................................................................................................... 58 

Figure 21: SocKit (source Terasic Inc) ....................................................................................... 59 

Figure 22: Arty (source Digilent Inc) ..........................................................................................60 

Figure 23: PMOD RTC (source Digilent Inc) ............................................................................ 61 

 


	1  Introduction
	1.1 Context Overview
	1.2 Function
	1.3 Architecture

	2 RTC Basics
	2.1 RTC Internals
	2.2 Interface
	2.3 RTC Registers
	2.4 UTC vs TAI time bases

	3 Register Set
	3.1 Register Overview
	3.2 Register Descriptions
	3.2.1 General
	3.2.1.1 RTC Master Control Register
	3.2.1.2 RTC Master Status Register
	3.2.1.3 RTC Master Polarity Register
	3.2.1.4 RTC Master Version Register
	3.2.1.5 RTC Master Time Read Value Low Register
	3.2.1.6 RTC Master Time Read Value High Register
	3.2.1.7 RTC Master Time Write Value Low Register
	3.2.1.8 RTC Master Time Write Value High Register



	4 Design Description
	4.1 Top Level – Rtc Master
	4.1.1.1 Parameters
	4.1.1.2 Structured Types
	4.1.1.2.1 Clk_Time_Type
	4.1.1.2.2 Clk_CoreInfo_Type
	4.1.1.2.3 Rtc_MasterStaticConfig_Type
	4.1.1.2.4 Rtc_MasterStaticConfigVal_Type
	4.1.1.2.5 Rtc_MasterStaticStatus_Type
	4.1.1.2.6 Rtc_MasterStaticStatusVal_Type

	4.1.1.3 Entity Block Diagram
	4.1.1.4 Entity Description
	4.1.1.5 Entity Declaration

	4.2 Design Parts
	4.2.1 I2C
	4.2.1.1 Entity Block Diagram
	4.2.1.2 Entity Description
	4.2.1.3 Entity Declaration

	4.2.2 Control Processor
	4.2.2.1 Entity Block Diagram
	4.2.2.2 Entity Description
	4.2.2.3 Entity Declaration

	4.2.3 Read Processor
	4.2.3.1 Entity Block Diagram
	4.2.3.2 Entity Description
	4.2.3.3 Entity Declaration

	4.2.4 Write Processor
	4.2.4.1 Entity Block Diagram
	4.2.4.2 Entity Description
	4.2.4.3 Entity Declaration

	4.2.5 Registerset
	4.2.5.1 Entity Block Diagram
	4.2.5.2 Entity Description
	4.2.5.3 Entity Declaration


	4.3 Configuration example
	4.3.1 Static Configuration
	4.3.2 AXI Configuration

	4.4 Clocking and Reset Concept
	4.4.1 Clocking
	4.4.2 Reset


	5 Resource Usage
	5.1 Intel/Altera (Cyclone V)
	5.2 AMD/Xilinx (Artix 7)
	5.3

	6 Delivery Structure
	7 Testbench
	7.1 Run Testbench

	8 Reference Designs
	8.1 Intel/Altera: Terasic SocKit
	8.2 AMD/Xilinx: Digilent Arty
	8.2.1 RTC CLock

	8.3 AMD/Xilinx : Vivado version


