

PpsSlave Reference Manual 1.7 Page 1 of 47

PpsSlaveClock

Reference Manual

Product Info

Product Manager Sven Meier

Author(s) Sven Meier

Reviewer(s) -

Version 1.7

Date 05.04.2024

PpsSlave Reference Manual 1.7 Page 2 of 47

Copyright Notice

Copyright © 2025 NetTimeLogic GmbH, Switzerland. All rights reserved.

Unauthorized duplication of this document, in whole or in part, by any means, is

prohibited without the prior written permission of NetTimeLogic GmbH, Switzer-

land.

All referenced registered marks and trademarks are the property of their respective

owners

Disclaimer

The information available to you in this document/code may contain errors and is

subject to periods of interruption. While NetTimeLogic GmbH does its best to

maintain the information it offers in the document/code, it cannot be held respon-

sible for any errors, defects, lost profits, or other consequential damages arising

from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-

UCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES

WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES,

INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-

ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE

HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO

EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY

DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS

DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS

PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION

THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-

MENT/CODE.

PpsSlave Reference Manual 1.7 Page 3 of 47

Overview

NetTimeLogic’s PPS Slave Clock is a full hardware (FPGA) only implementation of

a synchronization core able to synchronize to a Pulse per Second input.

The whole algorithms and calculations are implemented in the core, no CPU is

required. This allows running PPS synchronization completely independent and

standalone from the user application. The core can be configured either by signals

or by an AXI4Lite-Slave Register interface.

Key Features:

• PPS Slave Clock

• Input signal filter

• PPS supervision

• PPS duty cycle analysis, width can be read via register

• Synchronization accuracy: +/- 25ns

• AXI4Lite register set or static configuration

• Timestamp resolution with 50 MHz system clock: 10ns

• Optional High Resolution Timestamping with 4ns resolution

• Optional TDC Timestamping with 1ns resolution

• Hardware PI Servo

PpsSlave Reference Manual 1.7 Page 4 of 47

Revision History

This table shows the revision history of this document.

Version Date Revision

0.1 28.12.2015 First draft

1.0 13.05.2016 First release

1.1 19.05.2016 Added structured types section

1.2 07.06.2016 Added polarity

1.3 20.12.2017 Status interface added

1.4 25.02.2020 HighResolution added

1.5 03.01.2023 Added Vivado upgrade version description

1.6 26.05.2023 Extended Cable delay range

1.7 05.04.2024 Added TDC

Table 1: Revision History

PpsSlave Reference Manual 1.7 Page 5 of 47

Content

1 INTRODUCTION 8

1.1 Context Overview 8

1.2 Function 8

1.3 Architecture 9

2 PPS BASICS 11

2.1 Interface 11

2.2 Delays 11

2.3 Accuracy 11

3 REGISTER SET 12

3.1 Register Overview 12

3.2 Register Descriptions 13

3.2.1 General 13

4 DESIGN DESCRIPTION 19

4.1 Top Level – Pps Slave 19

4.2 Design Parts 28

4.2.1 RX Processor 28

4.2.2 Registerset 33

4.3 Configuration example 36

4.3.1 Static Configuration 36

4.3.2 AXI Configuration 36

4.4 Clocking and Reset Concept 37

4.4.1 Clocking 37

4.4.2 Reset 37

PpsSlave Reference Manual 1.7 Page 6 of 47

5 RESOURCE USAGE 39

5.1 Intel/Altera (Cyclone V) 39

5.2 AMD/Xilinx (Artix 7) 39

6 DELIVERY STRUCTURE 40

7 TESTBENCH 41

7.1 Run Testbench 41

8 REFERENCE DESIGNS 43

8.1 Intel/Altera: Terasic SocKit 43

8.2 AMD/Xilinx: Digilent Arty 44

8.3 AMD/Xilinx: Vivado version 45

PpsSlave Reference Manual 1.7 Page 7 of 47

Definitions

Definitions

PPS Slave Clock A clock that can synchronize itself to a PPS input

PI Servo Loop
Proportional–integral servo loop, allows for smooth correc-

tions

Offset Phase difference between clocks

Drift Frequency difference between clocks

Table 2: Definitions

Abbreviations

Abbreviations

AXI AMBA4 Specification (Stream and Memory Mapped)

IRQ Interrupt, Signaling to e.g. a CPU

PPS Pulse Per Second

PS PPS Slave

TS Timestamp

TDC Time-to-Digital Converted

TB Testbench

LUT Look Up Table

FF Flip Flop

RAM Random Access Memory

ROM Read Only Memory

FPGA Field Programmable Gate Array

VHDL Hardware description Language for FPGA’s

Table 3: Abbreviations

PpsSlave Reference Manual 1.7 Page 8 of 47

1 Introduction

1.1 Context Overview

The PPS Slave Clock is meant as a co-processor handling a PPS input.

It takes a PPS input, filters it, calculates offset and drift and corrects it on the Coun-

ter Clock. In parallel the duty cycle and state of the PPS is monitored which can be

read via registers.

The PPS Slave Clock is designed to work in cooperation with the Counter Clock

core from NetTimeLogic (not a requirement). It contains an AXI4Lite slave for

configuration and status supervision from a CPU, this is however not required since

the PPS Slave Clock can also be configured statically via signals/constants directly

from the FPGA.

It can be combined with a TOD Slave clock to synchronize for e.g. to a GPS receiv-

er. Offset and drift are then corrected by the PPS Slave Clock to the next second

and the TOD Slave Clock will correct the absolute time on seconds level.

PPS PpsSlaveClockPPS

Source

CLOCK
Adjustable

Clock

Time &
Adjustment

A
X

I4
 L

it
e

 S
la

v
e

CPU

AXI4L

Figure 1: Context Block Diagram

1.2 Function

The PPS Slave Clock takes a PPS of configurable polarity and filters the input for

minimum stable phases before next edge and changes the polarity to high active.

This filtered signal is analyzed by the supervision and pulse width analyzer. This

PpsSlave Reference Manual 1.7 Page 9 of 47

block checks the PPS signal for correct patterns and extracts the duty cycle of the

PPS and provides it to the register set for further processing by a CPU. In parallel

to the analysis of the filtered PPS signal a timestamp is taken at the rising edge of

the filtered PPS and compensated for the input processing time. After 2 consecu-

tive correct PPS timestamps are taken the calculation of offset and drift is started.

For offset correction an additional cable delay is added to the calculation to com-

pensate the propagation delay between the master and slave. The offset is cor-

rected to the next best second boundary. Offset and drift corrections are feed to

the PI servo loops of the Adjustable Counter Clock Core and the output of the

Servo loop used for the next calculations. In case of an error the correction is

stopped until two PPS edges were correct again after the error flag was de-

asserted.

1.3 Architecture

The core is split up into different functional blocks for reduction of the complexity,

modularity and maximum reuse of blocks. The interfaces between the functional

blocks are kept as small as possible for easier understanding of the core.

PPS

SUPERV.

PPS

AXI4 Lite Slav e

REGISTER

SET

PpsSlaveClock

CLOCK
Adjustable

Clock

A
X

I4
 L

it
e

 S
la

v
e

PPS

Pin

PPS

PROC.

Time &
Adjustment

PPS

FILTER
PPS

Figure 2: Architecture Block Diagram

Register Set

This block allows reading status values and writing configuration.

PpsSlave Reference Manual 1.7 Page 10 of 47

PPS Filter

This filters the input signals and outputs a regenerated signal which can be used by

the other blocks. It is a look ahead filter which means it will immediately react on a

signal change if the signal was stable for a long enough period. Afterwards signal

changes will not have an effect until the signal was stable long enough. This is done

this way to get maximum accuracy on the first edge of a timestamp. However this

will not filter out glitches. A glitch will be detected and cause that the drift and

offset calculation will wait for the 2 contiguous PPS cycles without glitches. A slow

rising edge (around 80ns) however will not give any issues, this will be filtered out.

PPS Supervision

This block analyses the already filtered PPS. It will check the signal for the duty

cycle and period and signal an error if one of them is out of bounds. In parallel to

supervision it also extracts the duty cycle of the PPS.

PPS Processor

This block takes a timestamp of the rising edge of the PPS, takes the propagation

delay of the cable into account, calculates the offset and the drift and adjusts the

local clock.

PpsSlave Reference Manual 1.7 Page 11 of 47

2 PPS Basics

2.1 Interface

The Pulse per Second is a very simple interface and can be electrical or optical. It

can be a single ended, differential, open drain, open collector and therefore also

high or low active signal. The signal has a frequency of 1Hz as the name says.

The reference point is the edge to the active level; this shall be at the second over-

flow of the reference clock. This edge shall be very accurate compared to the edge

to the idle level (drive active level, tristate idle level).

For high accuracy synchronization delays have to be compensated for, and the

duty cycle of the PPS can be used for accuracy encoding.

A PPS network is normally a one-to-many configuration: one PPS master synchro-

nizes multiple PPS slaves of different distance from the master.

2.2 Delays

There are two kinds of delays in a PPS Network. One is the input delay of the PPS

to the core; this shall be constant and is compensated for. The second delay is the

propagation delay of the signal from the master to the slave. This is dependent on

the cable length and medium: 15cm of copper cable are equal to roughly 1ns of

propagation delay. This delay can be set in the core, e.g. for compensation of the

cable length to a time server on the building’s roof.

2.3 Accuracy

Some PPS Masters are capable of encoding its synchronization accuracy to the

duty cycle of the PPS signal. Often a logarithmic scale is used to encode the accu-

racy to a primary reference. E.g. 100ms of duty cycle = 10ns, 200ms = 100ns,

300ms = 1000ns, 400ms = 10000ns ... However this is not standardized. This core

is capable of measuring the duty cycle with millisecond resolution (+/- 1ms). Inter-

pretation of the duty cycle is up to the user.

4
0

0
m

s
D

u
ty

cy

cl
e

4
0

0
m

s
D

u
ty

cy

cl
e

Figure 3: PPS Waveform

PpsSlave Reference Manual 1.7 Page 12 of 47

3 Register Set

This is the register set of the PPS Slave Clock. It is accessible via AXI4Lite Memory Mapped. All registers are 32bit wide, no burst

access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Register ad-

dresses are only offsets in the memory area where the core is mapped in the AXI inter connects. Non existing register access in the

mapped memory area is answered with a slave decoding error.

3.1 Register Overview

Registerset Overview

Name Description Offset Access

Pps SlaveControl Reg PPS Slave Enable Control Register 0x00000000 RW

Pps SlaveStatus Reg PPS Slave Error Status Register 0x00000004 WC

Pps SlavePolarity Reg PPS Slave Polarity Register 0x00000008 RW

Pps SlaveVersion Reg PPS Slave Version Register 0x0000000C RO

Pps SlavePulseWidth Reg PPS Slave Pulse Width Register 0x00000010 RO

Pps SlaveCableDelay Reg PPS Slave Cable Delay Register 0x00000020 RW

Table 4: Register Set Overview

PpsSlave Reference Manual 1.7 Page 13 of 47

3.2 Register Descriptions

3.2.1 General

3.2.1.1 PPS Slave Control Register

Used for general control over the PPS Slave Clock, all configurations on the core shall only be done when disabled.

PPS SlaveControl Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

E
N

A
B

L
E

RO RW

Reset: 0x00000000

Offset: 0x0000

Name Description Bits Access

- Reserved, read 0 Bit:31:1 RO

ENABLE Enable Bit: 0 RW

PpsSlave Reference Manual 1.7 Page 14 of 47

3.2.1.2 PPS Slave Status Register

Shows the current status of the PPS Slave Clock.

Pps SlaveStatus Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

S
U

P
E

R
V

IS
IO

N
_
E

R
R

O
R

F
IL

T
E

R
_
E

R
R

O
R

RO W
C

W
C

Reset: 0x00000000

Offset: 0x0004

Name Description Bits Access

- Reserved, read 0 Bit: 31:2 RO

SUPERVISION_ERROR PPS Supervision Error (sticky) Bit: 1 WC

FILTER_ERROR PPS Filter Error (sticky) Bit: 0 WC

PpsSlave Reference Manual 1.7 Page 15 of 47

3.2.1.3 PPS Slave Polarity Register

Used for setting the signal input polarity of the PPS Slave Clock, shall only be done when disabled. Default value is set by the In-

putPolarity_Gen generic.

PPS SlavePolarity Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

P
O

L
A

R
IT

Y

RO RW

Reset: 0x0000000X

Offset: 0x0008

Name Description Bits Access

- Reserved, read 0 Bit:31:1 RO

POLARITY Signal Polarity (1 active high, 0 active low) Bit: 0 RW

PpsSlave Reference Manual 1.7 Page 16 of 47

3.2.1.4 PPS Slave Version Register

Version of the IP core, even though is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor

and bits 15 down to 0 the build numbers.

Pps SlaveVersion Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V
E

R
S

IO
N

RO

0xXXXXXXXX

Offset: 0x000C

Name Description Bits Access

VERSION Version of the core Bit: 31:0 RO

PpsSlave Reference Manual 1.7 Page 17 of 47

3.2.1.5 PPS Slave Pulse Width Register

Shows the current pulse width in milliseconds of the PPS input generated by the PPS source. This can be useful if the Master sup-

ports accuracy encoding on the PPS duty cycle (as NetTimeLogic’s Master is capable of)

Pps SlavePulseWidth Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

P
U

L
S

E
_
W

ID
T

H

RO RO

Reset: 0x000003FF

Offset: 0x0010

Name Description Bits Access

- Reserved, read 0 Bit: 31:10 RO

PULSE_WIDTH Observed pulse width of PPS in milliseconds (0x3FF means
no pulse length known or pulse wrong (< 100ms or >
1000ms))

Bit: 9:0 RO

PpsSlave Reference Manual 1.7 Page 18 of 47

3.2.1.6 PPS Slave Cable Delay Register

This register allows to compensate for the propagation delay of the cable between the PPS master and the PPS slave. To calculate

the delay a rule of thumb says around 1ns per 15cm of cable.

Pps SlaveCableDelay Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S
IG

N

-

C
A

B
L

E
_
D

E
L

A
Y

R
W

RO RW

Reset: 0x00000000

Offset: 0x0020

Name Description Bits Access

SIGN Sign of the cable delay, default positive (0) Bit: 31 RW

- Reserved, read 0 Bit: 30 RO

CABLE_DELAY Cable delay of cable to master in nanoseconds (15cm is
around 1ns)

Bit: 29:0 RW

PpsSlave Reference Manual 1.7 Page 19 of 47

4 Design Description

The following chapters describe the internals of the PPS Slave Clock: starting with

the Top Level, which is a collection of subcores, followed by the description of all

subcores.

4.1 Top Level – Pps Slave

4.1.1.1 Parameters

The core must be parametrized at synthesis time. There are a couple of parameters

which define the final behavior and resource usage of the core.

Name Type Size Description

PulseWidthDynamic

Support_Gen
boolean 1

Support for Pulse width analy-

sis:

true = pulse width is available

to read, false = pulse width is

ignored

StaticConfig_Gen boolean 1
If Static Configuration or AXI

is used

FilterDelay

Millisecond_Gen
natural 1

Min stable time of input PPS

before next edge (also min

duty cycle required of the

PPS)

ClockClkPeriod

Nanosecond_Gen
natural 1

Clock Period in Nanosecond:

Default for 50 MHz = 20 ns

InputDelay

Nanosecond_Gen
natural 1

Input delay of the PPS from

the connector to the input

signal.

InputPolarity_Gen boolean 1
true = high active, false = low

active

AxiAddressRange

Low_Gen
std_logic_vector 32

AXI Base Address

AxiAddressRange

High_Gen
std_logic_vector 32

AXI Base Address plus Regis-

terset Size

Default plus 0xFFFF

HighResSupport_Gen boolean 1 If a high-resolution clock

PpsSlave Reference Manual 1.7 Page 20 of 47

SysClkNx with alignment to

SysClk is used

HighResFreq

Multiply_Gen
natural 1

Multiplication factor of the

high-resolution clock com-

pared to SysClk

TdcSupport_Gen boolean 1 If TDC is supported

TdcCarryDelay

Femtosecond_Gen
natural 1 Delay of a Carry element

TdcInputDelay

Picoseconds_Gen
natural 1

Delay from the IO Pin until the

first Carry

TdcFixPosition_Gen boolean 1

If the position of the TDC shall

be fixed in the design (Xilinx

only)

TdcXPosition_Gen natural 1
TDC Start position Slice X

position. Area is (X-1) - (X+1)

TdcYPosition_Gen natural 1

TDC Start position Slice Y

position. Area is (Y-1) -

(Y+NrOfCarries)

Sim_Gen boolean 1

If in Testbench simulation

mode:

true = Simulation, false =

Synthesis

Table 5: Parameters

4.1.1.2 Structured Types

4.1.1.2.1 Clk_Time_Type

Defined in Clk_Package.vhd of library ClkLib

Type represents the time used everywhere. For this type overloaded operators +

and – with different parameters exist.

Field Name Type Size Description

Second std_logic_vector 32 Seconds of time

Nanosecond std_logic_vector 32 Nanoseconds of time

Fraction std_logic_vector 2
Fraction numerator (mostly

not used)

PpsSlave Reference Manual 1.7 Page 21 of 47

Sign std_logic 1
Positive or negative time, 1 =

negative, 0 = positive.

TimeJump std_logic 1
Marks when the clock makes a

time jump (mostly not used)

Table 6: Clk_Time_Type

4.1.1.2.2 Clk_TimeAdjustment_Type

Defined in Clk_Package.vhd of library ClkLib

Type represents the time used everywhere. For this type overloaded operators +

and – with different parameters exist.

Field Name Type Size Description

TimeAdjustment Clk_Time_Type 1 Time to adjust

Interval std_logic_vector 32

Adjustment interval, for the

drift correction this is the

denumerator of the rate in

nanoseconds (TimeAdjust-

ment every Interval = drift

rate), for offset correction this

is the period in which the time

shall be correct-

ed(TimeAdjustment in Inter-

val), for setting the time this

has no mining.

Valid std_logic 1
Whether the Adjustment is

valid or not

Table 7: Clk_TimeAdjustment_Type

4.1.1.2.3 Pps_SlaveStaticConfig_Type

Defined in Pps_SlaveAddrPackage.vhd of library PpsLib

This is the type used for static configuration.

Field Name Type Size Description

Polarity std_logic 1
‘1’ = high active, ‘0’ = low

active

PpsSlave Reference Manual 1.7 Page 22 of 47

CableDelay std_logic_vector 30

Compensation value for the

cable delay between master

and slave in Nanoseconds: 1ns

= 15cm

Table 8: Pps_SlaveStaticConfig_Type

4.1.1.2.4 Pps_SlaveStaticConfigVal_Type

Defined in Pps_SlaveAddrPackage.vhd of library PpsLib

This is the type used for valid flags of the static configuration.

Field Name Type Size Description

Enable_Val std_logic 1 Enables the PPS Slave

Table 9: Pps_SlaveStaticConfigVal_Type

4.1.1.2.5 Pps_SlaveStaticStatus_Type

Defined in Pps_SlaveAddrPackage.vhd of library PpsLib

This is the type used for static status supervision.

Field Name Type Size Description

CoreInfo
Clk_CoreInfo_

Type
1

Infor about the Cores state

Table 10: Pps_SlaveStaticConfig_Type

4.1.1.2.6 Pps_SlaveStaticStatusVal_Type

Defined in Pps_SlaveAddrPackage.vhd of library PpsLib

This is the type used for valid flags of the static status supervision.

Field Name Type Size Description

CoreInfo_Val std_logic 1 Core Info valid

Table 11: Pps_SlaveStaticConfigVal_Type

PpsSlave Reference Manual 1.7 Page 23 of 47

4.1.1.3 Entity Block Diagram

PPS

REGISTER

SETAXI MM

Config

Error

RX

PROC.

Enable

Drift Cor.

Offset Cor.

Pulse
WIdth

Polarity

Figure 4: PPS Slave Clock

4.1.1.4 Entity Description

Rx Processor

This module handles the incoming PPS signal. It filters and timestamps the rising

edge of the PPS input with the local clock. In parallel it supervises the input signal

for abnormalities and for the duty cycle which it provides to the Registerset. From

the timestamp of the rising edge of the PPS it calculates drift and offset and ad-

justs the local clock.

See 4.2.1 for more details.

Registerset

This module is an AXI4Lite Memory Mapped Slave. It provides access to all regis-

ters and allows configuring the PPS Slave Clock. It can be configured to either run

in AXI or StaticConfig mode. If in StaticConfig mode, the configuration of the

registers is done via signals and can be easily done from within the FPGA without

CPU. If in AXI mode, an AXI Master has to configure the registers with AXI writes to

the registers, which is typically done by a CPU

See 4.2.2 for more details.

4.1.1.5 Entity Declaration

Name Dir Type Size Description

Generics

General

PulseWidthDynamic

Support_Gen
- boolean 1

Support for Pulse

width analysis

StaticConfig_Gen - boolean 1 If Static Configura-

PpsSlave Reference Manual 1.7 Page 24 of 47

tion or AXI is used

FilterDelay

Millisecond_Gen
- natural 1

Min stable time of

input PPS before

next edge

ClockClkPeriod

Nanosecond_Gen
- natural 1

Integer Clock Period

InputDelay

Nanosecond_Gen
- natural 1

Input delay of the

PPS from the con-

nector to the input

signal.

InputPolarity_Gen - boolean 1
True: High active,

False: Low active

AxiAddressRange

Low_Gen
- std_logic_vector 32

AXI Base Address

AxiAddressRange

High_Gen
- std_logic_vector 32

AXI Base Address

plus Registerset

Size

HighResSupport_Gen - boolean 1

If a high-resolution

clock SysClkNx with

alignment to SysClk

is used

HighResFreq

Multiply_Gen
- natural 1

Multiplication factor

of the high-

resolution clock

compared to SysClk

TdcSupport_Gen - boolean 1 If TDC is supported

TdcCarryDelay

Femtosecond_Gen
- natural 1

Delay of a Carry

element

TdcInputDelay

Picoseconds_Gen
- natural 1

Delay from the IO

Pin until the first

Carry

TdcFixPosition_Gen - boolean 1

If the position of the

TDC shall be fixed in

the design (Xilinx

only)

TdcXPosition_Gen - natural 1

TDC Start position

Slice X position.

Area is (X-1) - (X+1)

PpsSlave Reference Manual 1.7 Page 25 of 47

TdcYPosition_Gen - natural 1

TDC Start position

Slice Y position.

Area is (Y-1) -

(Y+NrOfCarries)

MaxOffset_Gen - natural 1

If Offset is larger

than this change

into Uncalibrated

state if Slave

Sim_Gen - boolean 1
If in Testbench

simulation mode

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysClkNx_ClkIn in std_logic 1

High-resolution

clock (multiple of

Sys Clock)

SysRstN_RstIn in std_logic 1 System Reset

Config

StaticConfig_DatIn in
Pps_Slave

StaticConfig_Type
1

Static Configuration

StaticConfig_ValIn in

Pps_Slave

StaticConfigVal

_Type

1

Static Configuration

valid

Status

StaticStatus_DatOut out
Pps_Slave

StaticStatus_Type
1

Static Status

StaticStatus_ValOut out

Pps_Slave

StaticStatusVal

_Type

1

Static Status valid

Timer

Timer1ms_EvtIn in std_logic 1

Millisecond timer

adjusted with the

Clock

Time Input

ClockTime_DatIn in Clk_Time_Type 1
Adjusted PTP Clock

Time

ClockTime_ValIn in std_logic 1
Adjusted PTP Clock

Time valid

AXI4 Lite Slave

PpsSlave Reference Manual 1.7 Page 26 of 47

AxiWriteAddrValid
_ValIn

in std_logic 1 Write Address Valid

AxiWriteAddrReady
_RdyOut

out std_logic 1
Write Address

Ready

AxiWriteAddrAddress
_AdrIn

in std_logic_vector 32 Write Address

AxiWriteAddrProt
_DatIn

in std_logic_vector 3
Write Address

Protocol

AxiWriteDataValid
_ValIn

in std_logic 1 Write Data Valid

AxiWriteDataReady
_RdyOut

out std_logic 1 Write Data Ready

AxiWriteDataData
_DatIn

in std_logic_vector 32 Write Data

AxiWriteDataStrobe
_DatIn

in std_logic_vector 4 Write Data Strobe

AxiWriteRespValid
_ValOut

out std_logic 1
Write Response

Valid

AxiWriteRespReady
_RdyIn

in std_logic 1
Write Response

Ready

AxiWriteResp
Response_DatOut

out std_logic_vector 2 Write Response

AxiReadAddrValid
_ValIn

in std_logic 1 Read Address Valid

AxiReadAddrReady
_RdyOut

out std_logic 1
Read Address

Ready

AxiReadAddrAddress
_AdrIn

in std_logic_vector 32 Read Address

AxiReadAddrProt
_DatIn

in std_logic_vector 3
Read Address

Protocol

AxiReadDataValid
_ValOut

out std_logic 1 Read Data Valid

AxiReadDataReady
_RdyIn

in std_logic 1 Read Data Ready

AxiReadData
Response_DatOut

out std_logic_vector 2 Read Data

AxiReadDataData
_DatOut

out std_logic_vector 32
Read Data Re-

sponse

Pulse Per Second Input

Pps_EvtIn in std_logic 1
PPS input from a

PPS Master

Time Adjustment Output
TimeAdjustment
_DatOut out

Clk_TimeAdjustment

_Type
1

Time to set hard

(unused)

TimeAdjustment
_ValOut out std_logic 1

Time valid

(unused)

PpsSlave Reference Manual 1.7 Page 27 of 47

Offset Adjustment Output
OffsetAdjustment
_DatOut

out
Clk_TimeAdjustment

_Type
1

Calculated new

Offset between

Master and Slave

OffsetAdjustment
_ValOut out std_logic; 1

Calculated new

Offset valid

Drift Adjustment Output
DriftAdjustment
_DatOut

out
Clk_TimeAdjustment

_Type
1

Calculated new Drift

between Master and

Slave

DriftAdjustment
_ValOut out std_logic; 1

Calculated new Drift

valid

Offset Adjustment Input
OffsetAdjustment
_DatIn

in
Clk_TimeAdjustment

_Type
1

Calculated new

Offset after the PI

Servo loop

OffsetAdjustment
_ValIn

in std_logic; 1

Calculated new

Offset after the PI

Servo loop valid

Drift Adjustment Input
DriftAdjustment
_DatIn

in
Clk_TimeAdjustment

_Type
1

Calculated new Drift

after the PI Servo

loop

DriftAdjustment
_ValIn

in std_logic 1

Calculated new Drift

after the PI Servo

loop valid

Table 12: PPS Slave Clock

PpsSlave Reference Manual 1.7 Page 28 of 47

4.2 Design Parts

The PPS Slave Clock core consists of a couple of subcores. Each of the subcores

itself consist again of smaller function block. The following chapters describe these

subcores and their functionality.

4.2.1 RX Processor

4.2.1.1 Entity Block Diagram

PPS PPS

TS

SUPER-

VISIO

ADJ

CALC

Error

Enable

PPS Drift Cor.

Offset Cor.

PulseWidth

TS
Polarity

Figure 5: RX Processor

4.2.1.2 Entity Description

PPS Timestamper

This module filters the incoming PPS and takes a timestamp. of the Counter Clock

at the detection of the rising edge of the PPS. Filtering is done that way that a

certain time before an edge the signal had to be stable. Therefore a small spike will

still cause a pulse but a slow rise time or bouncing at the start of a pulse will be

filtered out. This is done this way to get maximum accuracy for the first edge of a

pulse but ignoring an “ugly” signal edge. In the same step of filtering the filtered

output PPS is created which is always high active. This high active PPS is then the

input to the timestamper which compensates the input and preprocessing delay of

the signal.

Supervision

This module checks the waveform of the filtered PPS and extracts the duty cycle. If

no PPS is detected or wrong duty cycles are detected an error is signaled.

The duty cycle is provided as PulseWidth to the Registerset and gives information

about the PPS Master’s accuracy (if supported)

PpsSlave Reference Manual 1.7 Page 29 of 47

Adjustment Calculation

This module calculates the drift and offset of the local clock and corrects it. After

enabling or error detection the calculation waits for two consecutive PPS before

adjusting the clock again. Initially the offset is corrected to the next best second by

either slowing down or accelerating the local clock.

4.2.1.3 Entity Declaration

Name Dir Type Size Description

Generics

General

ClockClkPeriod

Nanosecond_Gen
- natural 1

Clock Period in

Nanosecond

RX Processor
PulseWidthDynamic

Support_Gen
- boolean 1

Support for Pulse

width analysis

FilterDelay

Millisecond_Gen
- natural 1

Min stable time of

input PPS before

next edge

InputDelay

Nanosecond_Gen
- natural 1

Input delay of the

PPS from the con-

nector to the input

signal.

InputPolarity_Gen - boolean 1
True: High active,

False: Low cctive

HighResSupport_Gen - boolean 1

If a high-resolution

clock SysClkNx with

alignment to SysClk

is used

HighResFreq

Multiply_Gen
- natural 1

Multiplication factor

of the high-

resolution clock

compared to SysClk

TdcSupport_Gen - boolean 1 If TDC is supported

TdcCarryDelay

Femtosecond_Gen
- natural 1

Delay of a Carry

element

TdcInputDelay

Picoseconds_Gen
- natural 1

Delay from the IO

Pin until the first

PpsSlave Reference Manual 1.7 Page 30 of 47

Carry

TdcFixPosition_Gen - boolean 1

If the position of the

TDC shall be fixed in

the design (Xilinx

only)

TdcXPosition_Gen - natural 1

TDC Start position

Slice X position.

Area is (X-1) - (X+1)

TdcYPosition_Gen - natural 1

TDC Start position

Slice Y position.

Area is (Y-1) -

(Y+NrOfCarries)

MaxOffset_Gen - natural 1

If Offset is larger

than this change

into Uncalibrated

state if Slave

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysClkNx_ClkIn in std_logic 1

High-resolution

clock (multiple of

Sys Clock)

SysRstN_RstIn in std_logic 1 System Reset

Timer

Timer1ms_EvtIn in std_logic 1

Millisecond timer

adjusted with the

Clock

Time Input

ClockTime_DatIn in Clk_Time_Type 1
Adjusted PTP Clock

Time

ClockTime_ValIn in std_logic 1
Adjusted PTP Clock

Time valid

Pulse Per Second Polarity

PpsPolarity_DatIn in std_logic 10
‘1’: High active,

‘0’: Low active

Pulse Per Second Error Output

Pps_ErrOut out std_logic_vector 2

Indicates an error

either in the filter or

because of missing

PpsSlave Reference Manual 1.7 Page 31 of 47

PPS

Pulse Per Second Width Output

PpsPulse-
Width_DatOut

out std_logic_vector 10

0-999 in millisecond

marks the duty

cycle of the incom-

ing PPS

Enable Input

Enable_EnaIn in std_logic 1
Enables the correc-

tion and supervision

Pulse Per Second Cable Delay Input

PpsCableDelay_DatIn in Clk_Time_Type 1

Propagation delay

of the PPS signal

from the master

source to the con-

nector.

Pulse Per Second Input

Pps_EvtIn in std_logic 1
PPS input from a

PPS Master

Offset Adjustment Output
OffsetAdjustment
_DatOut

out
Clk_TimeAdjustment

_Type
1

Calculated new

Offset between

Master and Slave

OffsetAdjustment
_ValOut out std_logic; 1

Calculated new

Offset valid

Drift Adjustment Output
DriftAdjustment
_DatOut

out
Clk_TimeAdjustment

_Type
1

Calculated new Drift

between Master and

Slave

DriftAdjustment
_ValOut out std_logic; 1

Calculated new Drift

valid

Offset Adjustment Input
OffsetAdjustment
_DatIn

in
Clk_TimeAdjustment

_Type
1

Calculated new

Offset after the PI

Servo loop

OffsetAdjustment
_ValIn

in std_logic; 1

Calculated new

Offset after the PI

Servo loop valid

Drift Adjustment Input
DriftAdjustment
_DatIn in

Clk_TimeAdjustment

_Type
1

Calculated new Drift

after the PI Servo

PpsSlave Reference Manual 1.7 Page 32 of 47

loop

DriftAdjustment
_ValIn

in std_logic 1

Calculated new Drift

after the PI Servo

loop valid

Table 13: RX Processor

PpsSlave Reference Manual 1.7 Page 33 of 47

4.2.2 Registerset

4.2.2.1 Entity Block Diagram

Error
REGISTER

SETStatic
Config

AXI MM
Enable

PulseWidth

Polarity

Figure 6: Registerset

4.2.2.2 Entity Description

Register Set

This module is an AXI4Lite Memory Mapped Slave. It provides access to all regis-

ters and allows configuring the PPS Slave Clock. AXI4Lite only supports 32 bit wide

data access, no byte enables, no burst, no simultaneous read and writes and no

unaligned access. It can be configured to either run in AXI or StaticConfig mode. If

in StaticConfig mode, the configuration of the registers is done via signals and can

be easily done from within the FPGA without CPU. For each parameter a valid

signal is available, the enable signal shall be set last (or simultaneously). To change

configuration parameters the clock has to be disabled and enabled again, the cable

delay value can be changed at runtime. If in AXI mode, an AXI Master has to con-

figure the registers with AXI writes to the registers, which is typically done by a

CPU. Parameters can in this case also be changed at runtime.

4.2.2.3 Entity Declaration

Name Dir Type Size Description

Generics

General

PulseWidthDynamic

Support_Gen
- boolean 1

Support for Pulse

width analysis

StaticConfig_Gen - boolean 1
If Static Configura-

tion or AXI is used

Register Set

StaticConfig_Gen - boolean 1
If Static Configura-

tion or AXI is used

PpsSlave Reference Manual 1.7 Page 34 of 47

AxiAddressRange

Low_Gen
- std_logic_vector 32

AXI Base Address

AxiAddressRange

High_Gen
- std_logic_vector 32

AXI Base Address

plus Registerset

Size

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysRstN_RstIn in std_logic 1 System Reset

Config

StaticConfig_DatIn in
Pps_Slave

StaticConfig_Type
1

Static Configuration

StaticConfig_ValIn in

Pps_Slave

StaticConfigVal

_Type

1

Static Configuration

valid

Status

StaticStatus_DatOut out
Pps_Slave

StaticStatus_Type
1

Static Status

StaticStatus_ValOut out

Pps_Slave

StaticStatusVal

_Type

1

Static Status valid

AXI4 Lite Slave
AxiWriteAddrValid
_ValIn

in std_logic 1 Write Address Valid

AxiWriteAddrReady
_RdyOut

out std_logic 1
Write Address

Ready

AxiWriteAddrAddress
_AdrIn

in std_logic_vector 32 Write Address

AxiWriteAddrProt
_DatIn

in std_logic_vector 3
Write Address

Protocol

AxiWriteDataValid
_ValIn

in std_logic 1 Write Data Valid

AxiWriteDataReady
_RdyOut

out std_logic 1 Write Data Ready

AxiWriteDataData
_DatIn

in std_logic_vector 32 Write Data

AxiWriteDataStrobe
_DatIn

in std_logic_vector 4 Write Data Strobe

AxiWriteRespValid
_ValOut

out std_logic 1
Write Response

Valid

AxiWriteRespReady
_RdyIn

in std_logic 1
Write Response

Ready

AxiWriteResp out std_logic_vector 2 Write Response

PpsSlave Reference Manual 1.7 Page 35 of 47

Response_DatOut
AxiReadAddrValid
_ValIn

in std_logic 1 Read Address Valid

AxiReadAddrReady
_RdyOut

out std_logic 1
Read Address

Ready

AxiReadAddrAddress
_AdrIn

in std_logic_vector 32 Read Address

AxiReadAddrProt
_DatIn

in std_logic_vector 3
Read Address

Protocol

AxiReadDataValid
_ValOut

out std_logic 1 Read Data Valid

AxiReadDataReady
_RdyIn

in std_logic 1 Read Data Ready

AxiReadData
Response_DatOut

out std_logic_vector 2 Read Data

AxiReadDataData
_DatOut

out std_logic_vector 32
Read Data Re-

sponse

Pulse Per Second Polarity

PpsPolarity_DatOut out std_logic 10
‘1’: High active,

‘0’: Low active

Pulse Per Second Error Input

Pps_ErrIn in std_logic_vector 2

Indicates an error

either in the filter or

because of missing

PPS

Pulse Per Second Width Output

PpsPulseWidth_DatIn in std_logic_vector 10

0-999 in millisecond

marks the duty

cycle of the incom-

ing PPS

Pulse Per Second Cable Delay Output

PpsCable
Delay_DatOut

in Clk_Time_Type 1

Propagation delay

of the PPS signal

from the master

source to the con-

nector.

Enable Output

PpsSlave
Enable_DatOut

out std_logic 1
Enables the correc-

tion and supervision

Table 14: Registerset

PpsSlave Reference Manual 1.7 Page 36 of 47

4.3 Configuration example

In both cases the enabling of the core shall be done last, after or together with the

configuration.

4.3.1 Static Configuration

 constant PpsStaticConfigSlave_Con : Pps_SlaveStaticConfig_Type := (

 Polarity => '1',

 CableDelay => std_logic_vector(to_unsigned(128, 30)) – 128 ns

);

 constant PpsStaticConfigValSlave_Con : Pps_SlaveStaticConfigVal_Type := (

 Enable_Val => '1'

);

Figure 7: Static Configuration

The cable delay can be changed at runtime. It is always valid.

4.3.2 AXI Configuration

The following code is a simplified pseudocode from the testbench: The base ad-
dress of the PPS Slave Clock is 0x10000000.

-- PPS SLAVE

-- Config

-- Set polarity to high active

AXI WRITE 10000008 00000001

-- Set cable delay to 128 ns

AXI WRITE 10000020 00000080

-- enable PPS Slave

AXI WRITE 10000000 00000001

Figure 8: AXI Configuration

In the example the Cable delay is first set to 128ns then the core is enabled.

PpsSlave Reference Manual 1.7 Page 37 of 47

4.4 Clocking and Reset Concept

4.4.1 Clocking

To keep the design as robust and simple as possible, the whole PPS Slave Clock,

including the Counter Clock and all other cores from NetTimeLogic are run in one

clock domain. This is considered to be the system clock. Per default this clock is

50MHz. Where possible also the interfaces are run synchronous to this clock. For

clock domain crossing asynchronous fifos with gray counters or message patterns

with meta-stability flip-flops are used. Clock domain crossings for the AXI interface

is moved from the AXI slave to the AXI interconnect.

Clock Frequency Description

System

System Clock
50MHz

(Default)

System clock where the PPS Slave runs

on as well as the counter clock etc.

PPS Interface
PPS 1 Hz No clock, asynchronous data signal.

AXI Interface

AXI Clock
50MHz

(Default)

Internal AXI bus clock, same as the

system clock

Table 15: Clocks

4.4.2 Reset

In connection with the clocks, there is a reset signal for each clock domain. All

resets are active low. All resets can be asynchronously set and shall be synchro-

nously released with the corresponding clock domain. All resets shall be asserted

for the first couple (around 8) clock cycles. All resets shall be set simultaneously

and released simultaneously to avoid overflow conditions in the core. See the

reference designs top file for an example of how the reset shall be handled.

Reset Polarity Description

System

System Reset Active low
Asynchronous set, synchronous release

with the system clock

AXI Interface

PpsSlave Reference Manual 1.7 Page 38 of 47

AXI Reset Active low

Asynchronous set, synchronous release

with the AXI clock, which is the same as

the system clock

Table 16: Resets

PpsSlave Reference Manual 1.7 Page 39 of 47

5 Resource Usage

Since the FPGA Architecture between vendors and FPGA families differ there is a

split up into the two major FPGA vendors.

5.1 Intel/Altera (Cyclone V)

Configuration FFs LUTs BRAMs DSPs

Minimal

(No Dynamic pulse width support)
993 3668 0 0

Maximal (Dynamic pulse width

support)
1003 3696 0 0

Table 17: Resource Usage Intel/Altera

5.2 AMD/Xilinx (Artix 7)

Configuration FFs LUTs BRAMs DSPs

Minimal

(No Dynamic pulse width support)
1022 3692 0 0

Maximal (Dynamic pulse width

support)
1081 3790 0 0

Table 18: Resource Usage AMD/Xilinx

PpsSlave Reference Manual 1.7 Page 40 of 47

6 Delivery Structure

AXI -- AXI library folder

 |-Library -- AXI library component sources

 |-Package -- AXI library package sources

CLK -- CLK library folder

 |-Library -- CLK library component sources

 |-Package -- CLK library package sources

COMMON -- COMMON library folder

 |-Library -- COMMON library component sources

 |-Package -- COMMON library package sources

PPS -- PPS library folder

|-Core -- PPS library cores

 |-Doc -- PPS library cores documentations

 |-Library -- PPS library component sources

 |-Package -- PPS library package sources

 |-Refdesign -- PPS library cores reference designs

 |-Testbench -- PPS library cores testbench sources and sim/log

SIM -- SIM library folder

 |-Doc -- SIM library command documentation

 |-Package -- SIM library package sources

 |-Testbench -- SIM library testbench template sources

 |-Tools -- SIM simulation tools

PpsSlave Reference Manual 1.7 Page 41 of 47

7 Testbench

The Pps Slave testbench consist of 3 parse/port types: AXI, CLK and SIG.

The SIG output port takes the CLK port time as reference and sets the output

signals aligned with the time from the CLK. The SIG input port takes the time of the

Clock instance as reference and the signal from the SIG output port. Once the clock

is synchronized the CLK port and Clock generated time should be phase and fre-

quency aligned to a second. In addition for configuration and result checks an AXI

read and write port is used in the testbench and for accessing more than one AXI

slave also an AXI interconnect is required.

AXI0

AXI

READ

PORT

PPS

PARSER

AXI

PARSER

CLK

PARSER

PPS0

SIG

OUTPUT

PORT

PPS0

SIG

INPUT

PORT

AXI

INTERC.

PPS

SLAVE

(DUT)

AXI0

AXI

WRITE

PORT

PPS0

CLK

PORT

SIM

LOG

GENERAL

PARSER

CLK

CLOCK

Time Adj

Figure 9: Testbench Framework

For more information on the testbench framework check the Sim_ReferenceManual

documentation.

With the Sim parameter set the time base for timeouts are divided by 1000 to

100000 to speed up simulation time.

7.1 Run Testbench

1. Run the general script first

source XXX/SIM/Tools/source_with_args.tcl

2. Start the testbench with all test cases

src XXX/PPS/Testbench/Core/PpsSlave/Script/run_Pps_Slave_Tb.tcl

PpsSlave Reference Manual 1.7 Page 42 of 47

3. Check the log file LogFile1.txt in the XXX/PPS/Testbench/Core/PpsSlave/Log/

folder for simulation results.

PpsSlave Reference Manual 1.7 Page 43 of 47

8 Reference Designs

The PPS Slave reference design contains a PLL to generate all necessary clocks

(cores are run at 50 MHz), an instance of the PPS Slave Clock IP core and an in-

stance of the Adjustable Counter Clock IP core (needs to be purchased separately).

Optionally it also contains an instance of a PPS Master Clock IP core (has to be

purchased separately). To instantiate the optional IP core, change the correspond-

ing generic (PpsMasterAvailable_Gen) to true via the tool specific wizards.

The Reference Design is intended to be connected to any PPS Master. The Phase

and Frequency is corrected via the PPS Slave Clock. The PPS Master Clock is used

to create a PPS output which is compensated for the output delay and has a con-

figurable duty cycle, if not available an uncompensated PPS is directly generated

out of the MSB of the Time. Via the dip switches the cable delay can be entered in

5ns steps.

All generics can be adapted to the specific needs.

PPS

Slav e

CLOCK
Adjustable

Clock

PPS

AXI4 Lite Slav e

Offset &
 Drift

Adjustment
Time &
Timer

PpsRefDesign

PPS

Master

PPS

AXI4 Lite Slav e

AXI4 Lite Slav e

PLL

Figure 10: Reference Design

8.1 Intel/Altera: Terasic SocKit

The SocKit board is an FPGA board from Terasic Inc. with a Cyclone V SoC FPGA

from Intel/Altera. (http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=205&No=816)

1. Open Quartus 16.x

2. Open Project /PPS/Refdesign/Altera/SocKit/PpsSlave/PpsSlave.qpf

3. If the optional core PPS Master Clock is available add the files from the cor-

responding folders (PPS/Core, PPS/Library and PPS/Package)

4. Change the generics (PpsMasterAvailable_Gen) in Quartus (in the settings

menu, not in VHDL) to true for the optional cores that are available.

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816

PpsSlave Reference Manual 1.7 Page 44 of 47

5. Rerun implementation

6. Download to FPGA via JTAG

Figure 11: SocKit (source Terasic Inc)

For the ports on the HSMC connector the GPIO to HSMC adapter from Terasic Inc.

was used.

8.2 AMD/Xilinx: Digilent Arty

The Arty board is an FPGA board from Digilent Inc. with an Artix7 FPGA from

AMD/Xilinx. (http://store.digilentinc.com/arty-board-artix-7-fpga-development-

board-for-makers-and-hobbyists/)

1. Open Vivado 2019.1.

Note: If a different Vivado version is used, see chapter 8.3.

2. Run TCL script /PPS/Refdesign/Xilinx/Arty/PpsSlave/PpsSlave.tcl

a. This has to be run only the first time and will create a new Vivado Pro-

ject

3. If the project has been created before open the project and do not rerun the

project TCL

PPS-LED InSync-LED Alive-LED Soft Reset

PPS output

and

PPS input

on HSMC

Cable delay in

5ns steps

binary encoded

http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/
http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/

PpsSlave Reference Manual 1.7 Page 45 of 47

4. If the optional core PPS Master Clock is available add the files from the cor-

responding folders (PPS/Core, PPS/Library and PPS/Package) to the corre-

sponding Library (PpsLib).

5. Change the generics (PpsMasterAvailable_Gen) in Vivado (in the settings

menu, not in VHDL) to true for the optional cores that are available.

6. Rerun implementation

7. Download to FPGA via JTAG

Figure 12: Arty (source Digilent Inc)

8.3 AMD/Xilinx: Vivado version

The provided TCL script for creation of the reference-design project is targeting

AMD/Xilinx Vivado 2019.1.

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or

higher.

If a higher Vivado version is used, the following steps are recommended:

• Before executing the project creation TCL script, the script's references of

Vivado 2019 should be manually replaced to the current Vivado version. For

example, if version Vivado 2022 is used, then:

o The statement occurrences:

set_property flow "Vivado Synthesis 2019" $obj

shall be replaced by:

set_property flow "Vivado Synthesis 2022 $obj

PPS-LED InSync-LED Alive-LED Soft Reset

PPS output

PPS input

Cable delay in

5ns steps

binary encoded

PpsSlave Reference Manual 1.7 Page 46 of 47

o The statement occurrences:

set_property flow "Vivado Implementation 2019" $obj

shall be replaced by:

set_property flow "Vivado Implementation 2022" $obj

• After executing the project creation TCL script, the AMD/Xilinx IP cores,

such as the Clocking Wizard core, might be locked and a version upgrade

might be required. To do so:

1. At "Reports" menu, select "Report IP Status".

2. At the opened "IP Status" window, select "Upgrade Selected". The tool

will upgrade the version of the selected IP cores.

PpsSlave Reference Manual 1.7 Page 47 of 47

A List of tables

Table 1: Revision History ..4

Table 2: Definitions .. 7

Table 3: Abbreviations .. 7

Table 4: Register Set Overview .. 12

Table 5: Parameters ... 20

Table 6: Clk_Time_Type ... 21

Table 7: Clk_TimeAdjustment_Type .. 21

Table 8: Pps_SlaveStaticConfig_Type ... 22

Table 9: Pps_SlaveStaticConfigVal_Type ... 22

Table 10: Pps_SlaveStaticConfig_Type ... 22

Table 11: Pps_SlaveStaticConfigVal_Type ... 22

Table 12: PPS Slave Clock ... 27

Table 13: RX Processor ... 32

Table 14: Registerset ... 35

Table 15: Clocks ... 37

Table 16: Resets ... 38

Table 17: Resource Usage Intel/Altera ... 39

Table 18: Resource Usage AMD/Xilinx ... 39

B List of figures

Figure 1: Context Block Diagram .. 8

Figure 2: Architecture Block Diagram ... 9

Figure 3: PPS Waveform ... 11

Figure 4: PPS Slave Clock .. 23

Figure 5: RX Processor ... 28

Figure 6: Registerset ... 33

Figure 7: Static Configuration .. 36

Figure 8: AXI Configuration ... 36

Figure 9: Testbench Framework .. 41

Figure 10: Reference Design ... 43

Figure 11: SocKit (source Terasic Inc) ... 44

Figure 12: Arty (source Digilent Inc) .. 45

	1 Introduction
	1.1 Context Overview
	1.2 Function
	1.3 Architecture

	2 PPS Basics
	2.1 Interface
	2.2 Delays
	2.3 Accuracy

	3 Register Set
	3.1 Register Overview
	3.2 Register Descriptions
	3.2.1 General
	3.2.1.1 PPS Slave Control Register
	3.2.1.2 PPS Slave Status Register
	3.2.1.3 PPS Slave Polarity Register
	3.2.1.4 PPS Slave Version Register
	3.2.1.5 PPS Slave Pulse Width Register
	3.2.1.6 PPS Slave Cable Delay Register

	4 Design Description
	4.1 Top Level – Pps Slave
	4.1.1.1 Parameters
	4.1.1.2 Structured Types
	4.1.1.2.1 Clk_Time_Type
	4.1.1.2.2 Clk_TimeAdjustment_Type
	4.1.1.2.3 Pps_SlaveStaticConfig_Type
	4.1.1.2.4 Pps_SlaveStaticConfigVal_Type
	4.1.1.2.5 Pps_SlaveStaticStatus_Type
	4.1.1.2.6 Pps_SlaveStaticStatusVal_Type

	4.1.1.3 Entity Block Diagram
	4.1.1.4 Entity Description
	4.1.1.5 Entity Declaration

	4.2 Design Parts
	4.2.1 RX Processor
	4.2.1.1 Entity Block Diagram
	4.2.1.2 Entity Description
	4.2.1.3 Entity Declaration

	4.2.2 Registerset
	4.2.2.1 Entity Block Diagram
	4.2.2.2 Entity Description
	4.2.2.3 Entity Declaration

	4.3 Configuration example
	4.3.1 Static Configuration
	4.3.2 AXI Configuration

	4.4 Clocking and Reset Concept
	4.4.1 Clocking
	4.4.2 Reset

	5 Resource Usage
	5.1 Intel/Altera (Cyclone V)
	5.2 AMD/Xilinx (Artix 7)
	5.3

	6 Delivery Structure
	7 Testbench
	7.1 Run Testbench

	8 Reference Designs
	8.1 Intel/Altera: Terasic SocKit
	8.2 AMD/Xilinx: Digilent Arty
	8.3 AMD/Xilinx: Vivado version

