

ClkSignalGenerator Reference Manual 1.7 Page 1 of 55

ClockSignal

Timestamper

Reference Manual

Product Info

Product Manager Sven Meier

Author(s) Sven Meier

Reviewer(s) -

Version 1.7

Date 05.04.2024

ClkSignalGenerator Reference Manual 1.7 Page 2 of 55

Copyright Notice

Copyright © 2025 NetTimeLogic GmbH, Switzerland. All rights reserved.

Unauthorized duplication of this document, in whole or in part, by any means, is

prohibited without the prior written permission of NetTimeLogic GmbH, Switzer-

land.

All referenced registered marks and trademarks are the property of their respective

owners

Disclaimer

The information available to you in this document/code may contain errors and is

subject to periods of interruption. While NetTimeLogic GmbH does its best to

maintain the information it offers in the document/code, it cannot be held respon-

sible for any errors, defects, lost profits, or other consequential damages arising

from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-

UCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES

WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES,

INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-

ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE

HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO

EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY

DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS

DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS

PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION

THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-

MENT/CODE.

ClkSignalGenerator Reference Manual 1.7 Page 3 of 55

Overview

NetTimeLogic’s Signal Timestamper is a full hardware (FPGA) only implementation

of a Signal Timestamper. It allows to timestamp data aligned with an event signal

of configurable polarity. Timestamps are taken on the configured edge of the signal

and optional interrupts are generated. The Signal Timestamper is intended to be

connected to a CPU or any other AXI master that can read out the timestamps.

Optionally a timestamp buffer can be enabled to handle burst situations.

The settings can be configured either by signals or by an AXI4Lite-Slave Register

interface.

Key Features:

• Signal edge timestamping

• 32 bit second and 32 bit nanosecond timestamp

• Configurable polarity

• Input delay compensation

• Data snapshot for timestamp alignment

• Optional timestamp and Data buffering for burst handling

• Interrupt generation

• Interrupt masking

• Edge counter for event detection

• Maximum event rate depends on CPU and AXI bus load

• AXI4Lite register set or static configuration

• Timestamp resolution with 50 MHz system clock: 10ns

• Optional High Resolution Timestamping with 4ns resolution

• Optional TDC Timestamping with 1ns resolution

• Linux Driver

ClkSignalGenerator Reference Manual 1.7 Page 4 of 55

Revision History

This table shows the revision history of this document.

Version Date Revision

0.1 16.11.2016 First draft

1.0 18.11.2016 First release

1.1 12.09.2017 Timestamp buffer added

1.2 15.09.2017 Status register added

1.3 30.11.2017 Changed registerset, added cable delay

1.4 09.03.2018 Added Driver

1.5 25.02.2020 HighResolution added

1.6 03.01.2023 Added Vivado upgrade version description

1.7 05.04.2024 Added TDC

Table 1: Revision History

ClkSignalGenerator Reference Manual 1.7 Page 5 of 55

Content

1 INTRODUCTION 8

1.1 Context Overview 8

1.2 Function 8

1.3 Architecture 9

2 SIGNAL TIMESTAMPING BASICS 11

2.1 Digital Counter Clock 11

2.2 Drift and Offset adjustments 11

2.3 Signal Timestamping 13

3 REGISTER SET 14

3.1 Register Overview 14

3.2 Register Descriptions 15

3.2.1 General 15

4 DESIGN DESCRIPTION 28

4.1 Top Level – Clk SignalTimestamper 28

4.2 Design Parts 36

4.2.1 Signal Timestamper 36

4.2.2 Timestamp Buffer 39

4.2.3 Registerset 41

4.3 Configuration example 44

4.3.1 Static Configuration 44

4.3.2 AXI Configuration 45

4.4 Clocking and Reset Concept 46

4.4.1 Clocking 46

4.4.2 Reset 46

ClkSignalGenerator Reference Manual 1.7 Page 6 of 55

5 RESOURCE USAGE 48

5.1 Intel/Altera (Cyclone V) 48

5.2 AMD/Xilinx (Artix 7) 48

6 DELIVERY STRUCTURE 49

7 TESTBENCH 50

7.1 Run Testbench 50

8 REFERENCE DESIGNS 51

8.1 Intel/Altera: Terasic SocKit 51

8.2 AMD/Xilinx: Digilent Arty 52

8.3 AMD/Xilinx: Vivado Version 54

ClkSignalGenerator Reference Manual 1.7 Page 7 of 55

Definitions

Definitions

Counter Clock
A counter based clock that count in the period of its fre-

quency in nanoseconds

PI Servo Loop
Proportional–Integral servo loop, allows for smooth correc-

tions

Offset Phase difference between clocks

Drift Frequency difference between clocks

Table 2: Definitions

Abbreviations

Abbreviations

AXI AMBA4 Specification (Stream and Memory Mapped)

IRQ Interrupt, Signaling to e.g. a CPU

PPS Pulse Per Second

TS Timestamp

TDC Time-to-Digital Converted

CLK Clock

CC Counter Clock

TB Testbench

LUT Look Up Table

FF Flip Flop

RAM Random Access Memory

ROM Read Only Memory

FPGA Field Programmable Gate Array

VHDL Hardware description Language for FPGA’s

Table 3: Abbreviations

ClkSignalGenerator Reference Manual 1.7 Page 8 of 55

1 Introduction

1.1 Context Overview

The Signal Timestamper is meant as a co-processor handling event and timestamp-

ing them.

It takes a (synchronized) time input as reference, an event signal and optional data

to be timestamped and generates reference clock timestamps and data snapshots

on the configurable edge (polarity) of the event signal compensating the input

delay. A timestamp event will also cause an interrupt to signal to the CPU that an

event occurred and a timestamp is ready to be read. Whenever an edge is detect-

ed it will increase an internal counter which allows to detect missed events, since

the timestamper disables itself until the CPU has cleared the interrupt.

The Signal Timestamperis designed to work in cooperation with the Counter Clock

core from NetTimeLogic (not a requirement). It contains an AXI4Lite slave for

configuration, status supervision and timestamp readout from a CPU.

SignalSignal &
Data

Source

CLOCK
Adjustable Clock

Time

A
X

I4
 L

it
e

Sl
av

e

CPU

AXI4L

Data

ClockSignalTimestamperClockSignalTimestamper

Figure 1: Context Block Diagram

1.2 Function

The Signal Timestamper is, as the name says already, a signal timestamper which

takes a snapshot of a reference clock and optional data when an edge of config-

ured polarity is detected.

It uses two inputs: an event signal which defines when an event to timestamp

happens and optional a data array that shall be snapshot aligned with the event.

ClkSignalGenerator Reference Manual 1.7 Page 9 of 55

The data is used to correlate the timestamp, so the user application can make

actual use of the timestamp. For example this can be measurement values from a

sensor, e.g. when a vibration sensor is detecting an abnormal behavior it generates

an alarm, this alarm signal is provided to the timestamper together with the de-

tected g-force value. The Signal Timestamper then takes a snapshot of both the

time and the g-force value so the user can check when the event happened and

what the g-force value was at that point in time. Also a counter together with the

g-force value can be provided to detect which occurance of this abnormal event it

was.

Internally the Signal Timestamper has an event counter which is incremented

whenever an event was detected. This is usefull because the snapshot logic disa-

bles itself after an event and waits until it gets enabled by the CPU again by ac-

knowledging the interrupt.

As just stated out, interrupt clearing is reenabling the snapshot logic, so for every

detected event an interrupt is created, which shall trigger the CPU to read a

timestamp (and data) and acknowledge the completion of the readout. For burst

handling, a buffer was introduced which can store timestamps until the CPU has

read all timestamps.

1.3 Architecture

The core is split up into different functional blocks for reduction of the complexity,

modularity and maximum reuse of blocks. The interfaces between the functional

blocks are kept as small as possible for easier understanding of the core.

TIME-
STAMP
BUFFER

AXI4 Lite Slave

REGISTER
SET

Timestamp &
Data

ClockSignalTimestamperClockSignalTimestamper

CLOCK
Adjustable Clock

Time

A
X

I4
 L

it
e

 S
la

ve

Signal

Data

SIGNAL
TIME-

STAMPER

Timestamp

Ready

Interrupt

Data

Figure 2: Architecture Block Diagram

Register Set

This block allows reading status values, the timestamp and data snapshot and

writing configuration. On events generated by the Signal Timestamper block it

takes a snapshot of the data

ClkSignalGenerator Reference Manual 1.7 Page 10 of 55

Signal Timestamper

This block is the actual timestamper. It does the edge detection, event generation

and time snapshotting of the reference time.

Timestamp Buffer

This optional block buffers timestamps and data coming from the Signal

Timestamper to handle bursts.

ClkSignalGenerator Reference Manual 1.7 Page 11 of 55

2 Signal Timestamping Basics

2.1 Digital Counter Clock

A digital counter clock is the most commonly used type of absolute time sources

for digital systems. Its functionality is simple: every counter cycle it adds the period

of the counter cycle to a counter. Optimally the counter period is an integer num-

ber which makes things easier. Normally such a counter clock is split into two

counter parts, a sub seconds part and a seconds part, depending on the required

resolution the sub second part is in nanoseconds, microseconds or milliseconds or

even tens or hundreds of milliseconds. Once the sub seconds counter overflows

e.g. 10^9 nanoseconds are reached, the seconds counter is incremented by one and

the sub seconds counter is reset to the remainder if there is any.

The highest resolution can be achieved when the counter period is equal the clock

period where the counter is run on, this is then normally a nanoseconds resolution,

however with a quantization of the clock period.

Figure 3: shows a typical high resolution counter clock with nanosecond resolution

and a counter period equal the clock period and a clock of 50MHz which equals to

a 20ns clock period.

0 20 40 999999980.. 0 20

1234 1235

Clock

Nanoseconds
Counter

Seconds
Counter

Figure 3: Counter Clock

2.2 Drift and Offset adjustments

When a digital counter clock shall be synchronized there are two things that have

to be adjusted which is frequency differences aka drift and phase differences aka

offset. Normally the phase difference is only considered the phase within a second.

But for absolute time also the correct second is important.

ClkSignalGenerator Reference Manual 1.7 Page 12 of 55

Adjusting a counter clock in a simple way is to keep the clock frequency and adjust

the counter increment. This has the advantages that it normally has a much higher

resolution e.g. 1ns/s and it doesn’t require or relies on external hardware. To adjust

drift or offset additional nanoseconds are added or subtracted from the standard

increment of the period.

E.g. for a 50 MHz counter clock an offset of +100 ns could be adjusted from one

clock cycle to the next: 20 => 140=>160 => … (including 20 ns for the next clock

cycle) or it could for example be spread over the next 100 clock cycles: 20 => 41 =>

62 =>73 =>... which is a much smoother adjustment. The same applies to the drift

which can also be set once in a period or evenly spread over time.

But why is a smooth adjustment important? If for example a PWM signal is gener-

ated from the counter clock then you don’t want a time jump since the PWM would

not be correct anymore, and this is exactly what would happen if the time is not

corrected smoothly. The same applies for short time period measurements, these

would measure wrong periods because of the adjustments.

However it is not always possible to adjust the time smoothly, e.g. at startup of a

system the clock has to be adjusted by thousands of seconds to get to the time of

day (TAI start with second 0 at midnight 1.1.1970) or if the adjustment is larger than

the possible adjustment in a given period. This cannot be done smoothly in a rea-

sonable time, therefore the time is then set with a time jump.

Also important is that the clock doesn‘t count backwards during adjustments. Data

acquisition and measurement applications require for example a strongly monolith-

ically increasing time. This requirement basically limits the maximal adjustment so

the clock is still counting. E.g. at 50 MHz a norm period is 20 ns, the maximum

adjustment is therefore +/-19ns per clock period so the clock would still count with

1ns per clock period.

All these mechanisms are implemented in NetTimeLogic’s Adjustable Counter

Clock core.

When using the counter clock for signal timestamping or signal generation the

quantization fault is still the clock period but with an accurate nanosecond resolu-

tion.

ClkSignalGenerator Reference Manual 1.7 Page 13 of 55

2.3 Signal Timestamping

Timestamping means taking a snapshot of the time when an event occurred. In this

case a rising edge of a signal.

When timestamping, two delays must be considered, one is the delay from the

input (or source) to the core and the other is the delay the time it takes to detect

an edge. The sum of the two delays must be subtracted from the current time to

get back to the moment where the event happened.

Also the frequency and therefore quantization of the clock is important. It in the

end limits the resolution and therefore accuracy of the timestamp. When an event

happens, the best assumption is to correct to the middle of a period, this will limit

the maximum error to half a clock period. To achieve higher accuracy the signal

detection can work on both edges of the clock, this will again increase the accura-

cy by a factor of two. And of course higher frequencies for event detection can be

used and fractions taken into account to correct the timestamp.

Fehler! Verweisquelle konnte nicht gefunden werden.Figure 3: shows exactly the

delays which are occurring when timestamping.

1
.0

0
0

0
0

0
0

0
5

1
.0

0
0

0
0

0
0

2
5

1
.0

0
0

0
0

0
0

4
5

1
.0

0
0

0
0

0
0

6
5

1
.0

0
0

0
0

0
0

8
5

1
.0

0
0

0
0

0
1

0
6

1
.0

0
0

0
0

0
2

0
7

1
.0

0
0

0
0

0
2

2
7

1
.0

0
0

0
0

0
1

2
6

1
.0

0
0

0
0

0
1

4
6

1
.0

0
0

0
0

0
1

6
6

1
.0

0
0

0
0

0
1

8
6

1
.0

0
0

0
0

0
2

4
7

1
.0

0
0

0
0

0
2

6
7

1
.0

0
0

0
0

0
2

8
7

1
.0

0
0

0
0

0
3

0
8

1
.0

0
0

0
0

0
3

2
8

1
.0

0
0

0
0

0
3

4
8

1
.0

0
0

0
0

0
3

6
8

1
.0

0
0

0
0

0
3

8
8

1
.0

0
0

0
0

0
4

0
9

1
.0

0
0

0
0

0
4

2
9

1
.0

0
0

0
0

0
4

4
9

1
.0

0
0

0
0

0
4

6
9

1
.0

0
0

0
0

0
4

8
9

1
.0

0
0

0
0

0
5

1
0

1
.0

0
0

0
0

0
5

3
0

1
.0

0
0

0
0

0
5

5
0

1
.0

0
0

0
0

0
5

7
0

1
.0

0
0

0
0

0
5

9
0

1
.0

0
0

0
0

0
6

1
1

1
.0

0
0

0
0

0
6

3
1

1
.0

0
0

0
0

0
6

5
1

1
.0

0
0

0
0

0
6

7
1

1
.0

0
0

0
0

0
6

9
1

0
.9

9
9

9
9

9
9

8
4

0
.9

9
9

9
9

9
9

6
4

0
.9

9
9

9
9

9
9

4
4

0
.9

9
9

9
9

9
9

0
4

0
.9

9
9

9
9

9
8

8
3

0
.9

9
9

9
9

9
8

6
3

0
.9

9
9

9
9

9
8

2
3

0
.9

9
9

9
9

9
8

0
3

0
.9

9
9

9
9

9
9

2
4

0
.9

9
9

9
9

9
8

4
3

0
.9

9
9

9
9

9
7

8
2

0
.9

9
9

9
9

9
7

6
2

0
.9

9
9

9
9

9
7

2
2

0
.9

9
9

9
9

9
8

0
2

0
.9

9
9

9
9

9
7

4
2

0
.9

9
9

9
9

9
6

8
1

0
.9

9
9

9
9

9
6

6
1

+2
0

+2
0

+2
0

+2
0

+2
0

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
0

+2
0

+2
0

+2
0

+2
1

+2
1

In
p

u
t

D
el

ay

Timestamp Point

D
et

ec
t

D
el

ay

In
p

u
t

D
el

ay

Timestamp Point

D
et

ec
t

D
el

ay

Time

External Signal

Internal Signal

Figure 4: Time Stamping

ClkSignalGenerator Reference Manual 1.7 Page 14 of 55

3 Register Set

This is the register set of the Signal Timestamper. It is accessible via AXI4Lite Memory Mapped. All registers are 32bit wide, no

burst access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Register

addresses are only offsets in the memory area where the core is mapped in the AXI inter connects. Non existing register access in

the mapped memory area is answered with a slave decoding error.

3.1 Register Overview

Registerset Overview

Name Description Offset Access

Clk StControl Reg Clock Signal timestamping Read/Write Valid and Enabled Control
Register

0x00000000 RW

Clk StStatus Reg Clock Signal timestamping Status Register 0x00000004 WC

Clk StPolarity Reg Clock Signal timestamping Polarity Register 0x00000008 RW

Clk StVersion Reg Clock Signal timestamping Version Register 0x0000000C RO

Clk StCableDelay Reg Clock Signal timestamping Cable Delay Register 0x00000020 RW

Clk StIrq Reg Clock Signal timestamping Interrupt Register 0x00000030 WC

Clk StIrqMask Reg Clock Signal timestamping Interrupt Mask Register 0x00000034 RW

Clk StEvtCount Reg Clock Signal timestamping Event Count Register 0x00000038 RO

Clk StCount Reg Clock Signal timestamping Count Register 0x00000040 RO

Clk StTimeValueL Reg Clock Signal timestamping Timestamp Nanosecond Register 0x00000044 RO

Clk StTimeValueH Reg Clock Signal timestamping Timestamp Second Register 0x00000048 RO

Clk StDataWidth Reg Clock Signal timestamping Data Width Register 0x0000004C RO

Clk StData Reg Clock Signal timestamping Data Register(s) 0x00000050+ RO

ClkSignalGenerator Reference Manual 1.7 Page 15 of 55

3.2 Register Descriptions

3.2.1 General

3.2.1.1 CLK Signal Timestamper Control Register

Used for general control over the Signal Timestamper. Since most adjustment values are multi register values, set flags are available

to mark validity of the whole value.

Clk StControl Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

E
N

A
B

L
E

RO RW

Reset: 0x00000000

Offset: 0x0000

Name Description Bits Access

- Reserved, read 0 Bit: 31:1 RO

ENABLE Enable Bit: 0 RW

ClkSignalGenerator Reference Manual 1.7 Page 16 of 55

3.2.1.2 CLK Signal Timestamper Status Register

Used for status supervision. Shows if a timestamp was dropped in the buffer

Clk StStatus Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

D
R

O
P

RO WC

Reset: 0x00000000

Offset: 0x0004

Name Description Bits Access

- Reserved, read 0 Bit: 31:1 RO

DROP Drop Bit: 0 WC

ClkSignalGenerator Reference Manual 1.7 Page 17 of 55

3.2.1.3 CLK Signal Timestamper Polarity Register

Used for setting the signal input polarity, shall only be done when disabled. Default value is set by the InputPolarity_Gen generic.

Clk StPolarity Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

P
O

L
A

R
IT

Y

RO RW

Reset: 0x0000000X

Offset: 0x0008

Name Description Bits Access

- Reserved, read 0 Bit:31:1 RO

POLARITY Signal Polarity (1 active high, 0 active low) Bit: 0 RW

ClkSignalGenerator Reference Manual 1.7 Page 18 of 55

3.2.1.4 CLK Signal Timestamper Version Register

Version of the IP core, even though is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor

and bits 15 down to 0 the build numbers.

Clk StVersion Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V
E

R
S

IO
N

RO

Reset: 0xXXXXXXXX

Offset: 0x000C

Name Description Bits Access

VERSION Version of the core Bit: 31:0 RO

ClkSignalGenerator Reference Manual 1.7 Page 19 of 55

3.2.1.5 CLK Signal Timestamper Cable Delay Register

This register allows to compensate for the propagation delay of the cable between the source and sink. To calculate the delay a

rule of thumb says around 1ns per 15cm of cable.

Clk StCableDelay Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

C
A

B
L

E
_
D

E
L

A
Y

RO RW

Reset: 0x00000000

Offset: 0x0020

Name Description Bits Access

- Reserved, read 0 Bit: 31:16 RO

CABLE_DELAY Cable delay in nanoseconds (15cm is around 1ns) Bit: 15:0 RW

ClkSignalGenerator Reference Manual 1.7 Page 20 of 55

3.2.1.6 CLK Signal Timestamper Interrupt Register

Shows the interrupt state. 1 means interrupt asserted. As long as the interrupt is asserted timestamping is disabled until cleared.

Clk StIrq Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

IR
Q

RO WC

Reset: 0x00000000

Offset: 0x0030

Name Description Bits Access

- Reserved, read 0 Bit:31:1 RO

IRQ Interrupt, clearing re-enables timestamping Bit: 0 WC

ClkSignalGenerator Reference Manual 1.7 Page 21 of 55

3.2.1.7 CLK Signal Timestamper Interrupt Mask Register

Enabled and disable the interrupt generation. 1 means interrupt enabled. As long as the interrupt is disabled timestamping is disa-

bled.

Clk StIrqMask Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-

IR
Q

_
M

A
S

K

RO RW

Reset: 0x00000000

Offset: 0x0034

Name Description Bits Access

- Reserved, read 0 Bit:31:1 RO

IRQ Interrupt Mask, also enable Bit: 0 RW

ClkSignalGenerator Reference Manual 1.7 Page 22 of 55

3.2.1.8 CLK Signal Timestamper Timestamp Event Count Register

There is an internal counter which counts the number of timestamp events. This counts also if the interrupt is not cleared.

Clk StCount Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
S

_
E

V
T

_
C

O
U

N
T

RO

Reset: 0x00000000

Offset: 0x0038

Name Description Bits Access

TS_EVT_COUNT Timestamp counter Bit: 31:0 RO

ClkSignalGenerator Reference Manual 1.7 Page 23 of 55

3.2.1.9 CLK Signal Timestamper Timestamp Count Register

There is an internal counter which counts the number of timestamps. This counts up monotonic for each timestamp. If the number

is not incremented by one, timestamps were missed (the number of missed is new – old -1).

Clk StCount Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
S

_
C

O
U

N
T

RO

Reset: 0x00000000

Offset: 0x0040

Name Description Bits Access

TS_COUNT Timestamp number Bit: 31:0 RO

ClkSignalGenerator Reference Manual 1.7 Page 24 of 55

3.2.1.10 CLK Signal Timestamper Time Value Low Register

Timestamp of first event nanoseconds part value.

Clk StTimeValueL Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
S

_
T

IM
E

_
N

S

RO

Reset: 0x00000000

Offset: 0x0044

Name Description Bits Access

TS_TIME_NS Timestmap in Nanosecond Bit: 31:0 RO

ClkSignalGenerator Reference Manual 1.7 Page 25 of 55

3.2.1.11 CLK Signal Timestamper Time Value High Register

Timestamp of first event seconds part value.

Clk StTimeValueH Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
S

_
T

IM
E

_
S

RO

Reset: 0x00000000

Offset: 0x0048

Name Description Bits Access

TS_TIME_S Timestamp in Second Bit: 31:0 RO

ClkSignalGenerator Reference Manual 1.7 Page 26 of 55

3.2.1.12 CLK Signal Timestamper Data Width Registers

Data width in bits of the Data to be snapshot with the event.

Clk StDataWidth Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
S

_
D

A
T

A
_
W

ID
T

H

RO

Reset: 0x00000000

Offset: 0x004C

Name Description Bits Access

TS_DATA_WIDTH Timestamp Data Width in bits Bit: 31:0 RO

ClkSignalGenerator Reference Manual 1.7 Page 27 of 55

3.2.1.13 CLK Signal Timestamper Data Registers

Data snapshot with the timestamp. This can be used for aligning the timestamp with data. The data width to be snapshot can be

passed via DataWidth_Gen and will create the corresponding registers. Data storage is least significant word (LSW) first and if the

data width is not 32bit aligned the higher bits are padded width 0.

Clk StData Reg

Reg Description

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
S

_
D

A
T

A

RO

Reset: 0x00000000

Offset: 0x0050 (and further)

Name Description Bits Access

TS_DATA Timestamp Data for alignment Bit: 31:0 RO

ClkSignalGenerator Reference Manual 1.7 Page 28 of 55

4 Design Description

The following chapters describe the internals of the Signal Timestamper: starting

with the Top Level, which is a collection of subcores, followed by the description of

all subcores.

4.1 Top Level – Clk SignalTimestamper

4.1.1.1 Parameters

The core must be parametrized at synthesis time. There are a couple of parameters

which define the final behavior and resource usage of the core.

Name Type Size Description

StaticConfig_Gen boolean 1

If Static Configuration or AXI

is used:

true = Static, false = AXI

Buffered_Gen boolean 1

Whether the Timestamp

buffer shall be instantiated or

not

BufferDepth_Gen natural 1
How deep the buffer shall be

in number of timestamps

DataWidth_Gen natural 1

How width in bits the data

that shall snapshot aligned

with the timestamp

CableDelay_Gen boolean 1

If a cable delay shall be con-

figurable (only needed when

connected externaly)

InputDelay

Nanosecond_Gen
natural 1

Input delay of the signal from

the connector to the input

signal.

InputPolarity_Gen boolean 1
true = high active, false = low

active

DoubleEdge

Support_Gen
boolean 1

If timestamp detection shall

be done on both edges of the

clock

HighResSupport_Gen boolean 1 If a high-resolution clock

ClkSignalGenerator Reference Manual 1.7 Page 29 of 55

SysClkNx with alignment to

SysClk is used

HighResFreq

Multiply_Gen
natural 1

Multiplication factor of the

high-resolution clock com-

pared to SysClk

TdcSupport_Gen boolean 1 If TDC is supported

TdcCarryDelay

Femtosecond_Gen
natural 1 Delay of a Carry element

TdcInputDelay

Picoseconds_Gen
natural 1

Delay from the IO Pin until the

first Carry

TdcFixPosition_Gen boolean 1

If the position of the TDC shall

be fixed in the design (Xilinx

only)

TdcXPosition_Gen natural 1
TDC Start position Slice X

position. Area is (X-1) - (X+1)

TdcYPosition_Gen natural 1

TDC Start position Slice Y

position. Area is (Y-1) -

(Y+NrOfCarries)

AxiAddressRange

Low_Gen
std_logic_vector 32

AXI Base Address

AxiAddressRange

High_Gen
std_logic_vector 32

AXI Base Address plus Regis-

terset Size

Default plus 0xFFFF

Sim_Gen boolean 1

If in Testbench simulation

mode:

true = Simulation, false =

Synthesis

Table 4: Parameters

4.1.1.2 Structured Types

4.1.1.2.1 Clk_Time_Type

Defined in Clk_Package.h of library ClkLib

Type represents the time used everywhere. For this type overloaded operators +

and – with different parameters exist.

ClkSignalGenerator Reference Manual 1.7 Page 30 of 55

Field Name Type Size Description

Second std_logic_vector 32 Seconds of time

Nanosecond std_logic_vector 32 Nanoseconds of time

Fraction std_logic_vector 2
Fraction numerator (mostly

not used)

Sign std_logic 1
Positive or negative time, 1 =

negative, 0 = positive.

TimeJump std_logic 1
Marks when the clock makes a

time jump (mostly not used)

Table 5: Clk_Time_Type

4.1.1.2.2 Clk_SignalTimestamperStaticConfig_Type

Defined in Clk_SignalTimestamperAddrPackage.h of library ClkLib

This is the type used for static configuration.

Field Name Type Size Description

Polarity std_logic 1
‘1’ = high active, ‘0’ = low

active

CableDelay std_logic_vector 16 Cable Delay in Nanoseconds

Table 6: Clk_SignalTimestamperStaticConfig_Type

ClkSignalGenerator Reference Manual 1.7 Page 31 of 55

4.1.1.2.3 Clk_SignalTimestamperStaticConfigVal_Type

Defined in Clk_SignalTimestamperAddrPackage.h of library ClkLib

This is the type used for valid flags of the static configuration.

Field Name Type Size Description

Enable_Val std_logic 1 Enables the Timestamper

Table 7: Clk_SignalTimestamperStaticConfigVal_Type

4.1.1.3 Entity Block Diagram

REGISTER
SETAXI MM

Config

SIGNAL
TS

Signal

Data

Timestamp &
Data

Time

TS
BUFFER

Time-
stamp

Enable & Ready

Enable

Data

Delay

Figure 5: Signal Timestamper

4.1.1.4 Entity Description

Signal Timestamper

This module handles the incoming signal. It detects the configured edge (via the

polarity) of the input and generates a timestamp event which is the input for the

Register set module to also snapshot the data. When the edge is detected it takes

a timestamp of the reference clock and compensates it for the input and detection

delay. It also increments a counter which is incremented at every rising edge.

See 4.2.1 for more details.

Timestamp Buffer

This optional module buffers timestamps and data in a FIFO manner to overcome

burst situations. It stores and potentially drops timestamps if not eventually read

by the CPU via the Register Set. The Registerset signals to this module whenever it

is ready for a new timestamp.

See 4.2.2 for more details.

ClkSignalGenerator Reference Manual 1.7 Page 32 of 55

Registerset

This module is an AXI4Lite Memory Mapped Slave. It provides access to all regis-

ters and allows to configure the Signal Timestamper. It also contains the data

snapshot and interrupt logic. It can be configured to either run in AXI or Stat-

icConfig mode. If in StaticConfig mode, the configuration is done via signals and

can be easily done from within the FPGA without a CPU. If in AXI mode, an AXI

Master has to configure the core with AXI writes to the registers, which is typically

done by a CPU. The Signal Timestamper is only usefull when a CPU or another AXI

master with interrupt input is connected.

See 4.2.3 for more details.

4.1.1.5 Entity Declaration

Name Dir Type Size Description

Generics

General

StaticConfig_Gen - boolean 1
If Static Configura-

tion or AXI is used

Buffered_Gen - boolean 1

Whether the

Timestamp buffer

shall be instantiated

or not

BufferDepth_Gen - natural 1

How deep the

buffer shall be in

number of

timestamps

DataWidth_Gen - natural 1

How width in bits

the data that shall

snapshot aligned

with the timestamp

ClockClkPeriod

Nanosecond_Gen
- natural 1

Integer Clock Period

InputDelay

Nanosecond_Gen
- natural 1

Input delay of the

signal from the

connector to the

input signal.

InputPolarity_Gen - boolean 1 True: High active,

ClkSignalGenerator Reference Manual 1.7 Page 33 of 55

False: Low active

HighResSupport_Gen - boolean 1

If a high-resolution

clock SysClkNx with

alignment to SysClk

is used

HighResFreq

Multiply_Gen
- natural 1

Multiplication factor

of the high-

resolution clock

compared to SysClk

TdcSupport_Gen - boolean 1 If TDC is supported

TdcCarryDelay

Femtosecond_Gen
- natural 1

Delay of a Carry

element

TdcInputDelay

Picoseconds_Gen
- natural 1

Delay from the IO

Pin until the first

Carry

TdcFixPosition_Gen - boolean 1

If the position of the

TDC shall be fixed in

the design (Xilinx

only)

TdcXPosition_Gen - natural 1

TDC Start position

Slice X position.

Area is (X-1) - (X+1)

TdcYPosition_Gen - natural 1

TDC Start position

Slice Y position.

Area is (Y-1) -

(Y+NrOfCarries)

AxiAddressRange

Low_Gen
- std_logic_vector 32

AXI Base Address

AxiAddressRange

High_Gen
- std_logic_vector 32

AXI Base Address

plus Registerset

Size

Sim_Gen - boolean 1
If in Testbench

simulation mode

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysClkNx_ClkIn in std_logic 1
High-resolution

clock (multiple of

ClkSignalGenerator Reference Manual 1.7 Page 34 of 55

Sys Clock)

SysRstN_RstIn in std_logic 1 System Reset

Config

StaticConfig_DatIn in

Clk_SignalTime

stamperStatic

Config_Type

1

Static Configuration

StaticConfig_ValIn in

Clk_SignalTime

stamperStatic

ConfigVal_Type

1

Static Configuration

valid

Timer

Timer1ms_EvtIn in std_logic 1

Millisecond timer

adjusted with the

Clock

Time Input

ClockTime_DatIn in Clk_Time_Type 1
Adjusted PTP Clock

Time

ClockTime_ValIn in std_logic 1
Adjusted PTP Clock

Time valid

AXI4 Lite Slave
AxiWriteAddrValid
_ValIn

in std_logic 1 Write Address Valid

AxiWriteAddrReady
_RdyOut

out std_logic 1
Write Address

Ready

AxiWriteAddrAddress
_AdrIn

in std_logic_vector 32 Write Address

AxiWriteAddrProt
_DatIn

in std_logic_vector 3
Write Address

Protocol

AxiWriteDataValid
_ValIn

in std_logic 1 Write Data Valid

AxiWriteDataReady
_RdyOut

out std_logic 1 Write Data Ready

AxiWriteDataData
_DatIn

in std_logic_vector 32 Write Data

AxiWriteDataStrobe
_DatIn

in std_logic_vector 4 Write Data Strobe

AxiWriteRespValid
_ValOut

out std_logic 1
Write Response

Valid

AxiWriteRespReady
_RdyIn

in std_logic 1
Write Response

Ready

AxiWriteResp
Response_DatOut

out std_logic_vector 2 Write Response

AxiReadAddrValid
_ValIn

in std_logic 1 Read Address Valid

AxiReadAddrReady
_RdyOut

out std_logic 1 Read Address

ClkSignalGenerator Reference Manual 1.7 Page 35 of 55

Ready

AxiReadAddrAddress
_AdrIn

in std_logic_vector 32 Read Address

AxiReadAddrProt
_DatIn

in std_logic_vector 3
Read Address

Protocol

AxiReadDataValid
_ValOut

out std_logic 1 Read Data Valid

AxiReadDataReady
_RdyIn

in std_logic 1 Read Data Ready

AxiReadData
Response_DatOut

out std_logic_vector 2 Read Data

AxiReadDataData
_DatOut

out std_logic_vector 32
Read Data Re-

sponse

Interrupt Output

Irq_EvtOut out
Clk_Clock

StaticConfig_Type
1

Active high level

interrupt

Data Input

Data_DatIn in std_logic_vector
Data

Width_

Gen

Data to snapshot

Signal Input

SignalTimestamper
_EvtIn

in std_logic 1
Input signal for

event detection

Table 8: Signal Timestamper

ClkSignalGenerator Reference Manual 1.7 Page 36 of 55

4.2 Design Parts

The Signal Timestamper core consists of a couple of subcores. Each of the sub-

cores itself consist again of smaller function block. The following chapters describe

these subcores and their functionality.

4.2.1 Signal Timestamper

4.2.1.1 Entity Block Diagram

SIGNAL
TS

Signal Timestamp

Time

Event

Data Data & Count

Polarity Delay

Figure 6: Signal Timestamper

4.2.1.2 Entity Description

Signal Timestamper

This module detects events and takes timestamps. When the Signal Timestamper is

enabled it detects edges on the input signal and generates based on the polarity an

event on the rising or falling edge. In parallel it takes a snapshot of the reference

time and compensates the timestamp for the input- and detection- delay. This

timestamp and event is then passed to the Registerset module for further pro-

cessing.

4.2.1.3 Entity Declaration

Name Dir Type Size Description

Generics

General

ClockClkPeriod

Nanosecond_Gen
- natural 1

Integer Clock Period

CableDelay_Gen - boolean 1

If a cable delay shall

be configurable

(only needed when

connected exter-

naly)

ClkSignalGenerator Reference Manual 1.7 Page 37 of 55

InputDelay

Nanosecond_Gen
- natural 1

Input delay of the

signal from the

connector to the

input signal

InputPolarity_Gen - boolean 1
True: High active,

False: Low active

DataWidth_Gen - natural 1

How width in bits

the data that shall

snapshot aligned

with the timestamp

DoubleEdge

Support_Gen
- boolean 1

If timestamping

shall be done on

both edges

HighResSupport_Gen - boolean 1

If a high-resolution

clock SysClkNx with

alignment to SysClk

is used

HighResFreq

Multiply_Gen
- natural 1

Multiplication factor

of the high-

resolution clock

compared to SysClk

TdcSupport_Gen - boolean 1 If TDC is supported

TdcCarryDelay

Femtosecond_Gen
- natural 1

Delay of a Carry

element

TdcInputDelay

Picoseconds_Gen
- natural 1

Delay from the IO

Pin until the first

Carry

TdcFixPosition_Gen - boolean 1

If the position of the

TDC shall be fixed in

the design (Xilinx

only)

TdcXPosition_Gen - natural 1

TDC Start position

Slice X position.

Area is (X-1) - (X+1)

TdcYPosition_Gen - natural 1

TDC Start position

Slice Y position.

Area is (Y-1) -

(Y+NrOfCarries)

ClkSignalGenerator Reference Manual 1.7 Page 38 of 55

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysClkNx_ClkIn in std_logic 1

High-resolution

clock (multiple of

Sys Clock)

SysRstN_RstIn in std_logic 1 System Reset

Enable Input

Enable_EnaIn in std_logic 1
If the core is ena-

bled or not

Time Input

ClockTime_DatIn in Clk_Time_Type 1
Adjusted PTP Clock

Time

ClockTime_ValIn in std_logic 1
Adjusted PTP Clock

Time valid

Signal Values Input

SignalPolarity_DatIn in std_logic 1
‘1’: High active, ‘0’:

Low active

SignalCableDelay
_DatIn

in std_logic_vector 16
Delay in Nanosec-

onds

Timestamp Signal Input
ClockTimestamp

_EvtIn
in std_logic 1

Timestamp event

Data Input

Data_DatIn in std_logic_vector
Data

Width_

Gen

Data to snapshot

Timestamp Output

ClockTimestamp
_DatOut

out Clk_Time_Type 1
Corrected

Timestamp

ClockTimestamp
_ValOut

out std_logic 1
Corrected

Timestamp valid

Data Output

Data_DatOut out std_logic_vector
Data

Width_

Gen

Data snapshot

Count_CntOut out std_logic_vector 32 Timestamp Count

Table 9: Signal Timestamper

ClkSignalGenerator Reference Manual 1.7 Page 39 of 55

4.2.2 Timestamp Buffer

This is an optional module which can be enabled via the Buffered_Gen generic.

4.2.2.1 Entity Block Diagram

TS
BUFFER

Timestamp

Ready

Event

Data & Count

Timestamp

Event

Data & Count

FIFO

Write

Read

Drop

Figure 7: Timestamp Buffer

4.2.2.2 Entity Description

Timestamp Buffer

This module buffers timestamp in a FIFO, it writes the timestamp, count and data

in 32bit blocks into the FIFO and reads it the same way from the FIFO. This allows

burst handling of quite high frequencies (low MHz range). It waits for propagating

the timestamps to the Registerset until this module is ready.

FIFO

This module is the actual storage of the timestamps. It acts as a FIFO with 32bit

width.

4.2.2.3 Entity Declaration

Name Dir Type Size Description

Generics

General

DataWidth_Gen - natural 1

How width in bits

the data that shall

snapshot aligned

with the timestamp

BufferDepth_Gen - natural 1
How deep the

buffer shall be in

ClkSignalGenerator Reference Manual 1.7 Page 40 of 55

number of

timestamps

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysRstN_RstIn in std_logic 1 System Reset

Enable Input

Enable_EnaIn in std_logic 1

If the core is ena-

bled or not, disabled

will flush the buffer

Ready Input

Ready_ValIn in std_logic 1

Signals if the Regis-

terset is ready for

the next timestamp

Drop Output

Drop_ValOut out std_logic 1

Asserted when the

FIFO had

dropped/missed a

timestamp

Timestamp Input

ClockTimestamp
_DatIn

in Clk_Time_Type 1
Corrected

Timestamp

ClockTimestamp
_ValIn

in std_logic 1
Corrected

Timestamp valid

Data Input

Data_DatIn in std_logic_vector
Data

Width_

Gen

Data to snapshot

Count_CntIn in std_logic_vector 32 Timestamp Count

Timestamp Output

ClockTimestamp
_DatOut

out Clk_Time_Type 1
Corrected

Timestamp

ClockTimestamp
_ValOut

out std_logic 1
Corrected

Timestamp valid

Data Output

Data_DatOut out std_logic_vector
Data

Width_

Gen

Data snapshot

Count_CntOut out std_logic_vector 32 Timestamp Count

Table 10: Timestamp Buffer

ClkSignalGenerator Reference Manual 1.7 Page 41 of 55

4.2.3 Registerset

4.2.3.1 Entity Block Diagram

REGISTER
SET

Static
Config

AXI MM Enable

Data & Count

Timestamp

Event

Interrupt

Polarity & Delay

Event

Figure 8: Registerset

4.2.3.2 Entity Description

Register Set

This module is an AXI4Lite Memory Mapped Slave. It provides access to the

timestamp and data snapshot registers and allows configuring the Signal

Timestamper. AXI4Lite only supports 32 bit wide data access, no byte enables, no

burst, no simultaneous read and writes and no unaligned access. It can be config-

ured to either run in AXI or StaticConfig mode. If in StaticConfig mode, the configu-

ration is done via signals and can be easily done from within the FPGA without

CPU. For each parameter a valid signal is available, the enable signal shall be set

last (or simultaneously). To change parameters the clock has to be disabled and

enabled again. If in AXI mode, an AXI Master has to configure the Signal

Timestamper with AXI writes to the registers, which is typically done by a CPU.

Parameters can in this case also be changed at runtime.

This module also contains the snapshot of data logic. Timestamping and data

snapshotting is automatically disabled after an event was detected and must be

released via clearing of the interrupt. This implies that a CPU is reacting with the

timestamper at all times to not lose a timestamp. For this situation, an internal

counter is used which is incremented at every event independent of the interrupt

state. This allows detecting lost events.

The number of timestamps possible to handle heavily depends on the interrupt

latency, CPU speed and AXI bus load.

ClkSignalGenerator Reference Manual 1.7 Page 42 of 55

4.2.3.3 Entity Declaration

Name Dir Type Size Description

Generics

Register Set

StaticConfig_Gen - boolean 1
If Static Configura-

tion or AXI is used

CableDelay_Gen - boolean 1

If a cable delay shall

be configurable

(only needed when

connected exter-

naly)

InputPolarity_Gen - boolean 1
True: High active,

False: Low active

DataWidth_Gen - natural 1

How width in bits

the data that shall

snapshot aligned

with the timestamp

AxiAddressRange

Low_Gen
- std_logic_vector 32

AXI Base Address

AxiAddressRange

High_Gen
- std_logic_vector 32

AXI Base Address

plus Registerset

Size

Ports

System
SysClk_ClkIn in std_logic 1 System Clock

SysRstN_RstIn in std_logic 1 System Reset

Config

StaticConfig_DatIn in

Clk_SignalTime

stamperStatic

Config_Type

1

Static Configuration

StaticConfig_ValIn in

Clk_SignalTime

stamperStatic

ConfigVal_Type

1

Static Configuration

valid

Time Input

ClockTime_DatIn in Clk_Time_Type 1
Adjusted Clock

Time

ClockTime_ValIn in std_logic 1
Adjusted Clock

Time valid

ClkSignalGenerator Reference Manual 1.7 Page 43 of 55

AXI4 Lite Slave
AxiWriteAddrValid
_ValIn

in std_logic 1 Write Address Valid

AxiWriteAddrReady
_RdyOut

out std_logic 1
Write Address

Ready

AxiWriteAddrAddress
_AdrIn

in std_logic_vector 32 Write Address

AxiWriteAddrProt
_DatIn

in std_logic_vector 3
Write Address

Protocol

AxiWriteDataValid
_ValIn

in std_logic 1 Write Data Valid

AxiWriteDataReady
_RdyOut

out std_logic 1 Write Data Ready

AxiWriteDataData
_DatIn

in std_logic_vector 32 Write Data

AxiWriteDataStrobe
_DatIn

in std_logic_vector 4 Write Data Strobe

AxiWriteRespValid
_ValOut

out std_logic 1
Write Response

Valid

AxiWriteRespReady
_RdyIn

in std_logic 1
Write Response

Ready

AxiWriteResp
Response_DatOut

out std_logic_vector 2 Write Response

AxiReadAddrValid
_ValIn

in std_logic 1 Read Address Valid

AxiReadAddrReady
_RdyOut

out std_logic 1
Read Address

Ready

AxiReadAddrAddress
_AdrIn

in std_logic_vector 32 Read Address

AxiReadAddrProt
_DatIn

in std_logic_vector 3
Read Address

Protocol

AxiReadDataValid
_ValOut

out std_logic 1 Read Data Valid

AxiReadDataReady
_RdyIn

in std_logic 1 Read Data Ready

AxiReadData
Response_DatOut

out std_logic_vector 2 Read Data

AxiReadDataData
_DatOut

out std_logic_vector 32
Read Data Re-

sponse

Timestamp Signal Input
ClockTimestamp

_EvtIn
in std_logic 1

Timestamp event

Timestamp Input

ClockTimestamp
_DatIn

in Clk_Time_Type 1
Corrected

Timestamp

ClockTimestamp
_ValIn

in std_logic 1 Corrected

ClkSignalGenerator Reference Manual 1.7 Page 44 of 55

Timestamp valid

Data Input

Data_DatIn in std_logic_vector
Data

Width_

Gen

Data to snapshot

Count_CntIn in std_logic_vector 32 Timestamp Count

Drop Input

Drop_ValIn in std_logic 1

Asserted when the

FIFO had

dropped/missed a

timestamp

Signal Values Output

SignalPolarity_DatOut out std_logic 1
‘1’: High active, ‘0’:

Low active

SignalCableDelay
_DatOut

out std_logic_vector 16
Delay in Nanosec-

onds

Interrupt Output

Irq_EvtOut out
Clk_Clock

StaticConfig_Type
1

Active high level

interrupt

Enable Output

TimestampEna-
ble_DatOut

out std_logic 1
Enable Signal

Timestamper

Table 11: Registerset

4.3 Configuration example

In both cases the enabling of the core shall be done last, after or together with the

configuration.

4.3.1 Static Configuration

 constant ClkStaticConfigSignalTimestamper_Con : Clk_SignalTimestamperStaticConfig_Type := (

 Polarity => '1'

);

 constant ClkStaticConfigValSignalTimestamper_Con : Clk_SignalTimestamperStaticConfigVal_Type

:= (

 Enable_Val => '1'

);

Figure 9: Static Configuration

ClkSignalGenerator Reference Manual 1.7 Page 45 of 55

4.3.2 AXI Configuration

The following code is a simplified pseudocode from the testbench: The base ad-
dress of the Signal Timestamper is 0x10000000.

-- CLK SIGNALTIMESTAMPER

-- Config

-- Polarity = 1

AXI WRITE 10000008 00000001

-- enable IRQ

AXI WRITE 10000014 00000001

-- enable signal timestamper

AXI WRITE 10000000 00000001

Figure 10: AXI Configuration

ClkSignalGenerator Reference Manual 1.7 Page 46 of 55

4.4 Clocking and Reset Concept

4.4.1 Clocking

To keep the design as robust and simple as possible, the whole Ordinary Clock,

including the Counter Clock and all other cores from NetTimeLogic are run in one

clock domain. This is considered to be the system clock. Per default this clock is

50MHz. Where possible also the interfaces are run synchronous to this clock. For

clock domain crossing asynchronous fifos with gray counters or message patterns

with meat stability flip-flops are used. Clock domain crossings for the AXI interface

is moved from the AXI slave to the AXI interconnect.

Clock Frequency Description

System

System Clock
50MHz

(Default)

System clock where the CC runs on as

well as the counter clock etc.

AXI Interface

AXI Clock
50MHz

(Default)

Internal AXI bus clock, same as the

system clock

Table 12: Clocks

4.4.2 Reset

In connection with the clocks, there is a reset signal for each clock domain. All

resets are active low. All resets can be asynchronously set and shall be synchro-

nously released with the corresponding clock domain. All resets shall be asserted

for the first couple (around 8) clock cycles. All resets shall be set simultaneously

and released simultaneously to avoid overflow conditions in the core. See the

reference designs top file for an example of how the reset shall be handled.

Reset Polarity Description

System

System Reset Active low
Asynchronous set, synchronous release

with the system clock

AXI Interface

AXI Reset Active low
Asynchronous set, synchronous release

with the AXI clock, which is the same as

ClkSignalGenerator Reference Manual 1.7 Page 47 of 55

the system clock

Table 13: Resets

ClkSignalGenerator Reference Manual 1.7 Page 48 of 55

5 Resource Usage

Since the FPGA Architecture between vendors and FPGA families differ there is a

split up into the two major FPGA vendors.

5.1 Intel/Altera (Cyclone V)

Configuration FFs LUTs BRAMs DSPs

Minimal

(Static Config, 32bit data)
- - - -

Maximal (AXI, 32bit data) 311 883 0 0

Table 14: Resource Usage Intel/Altera

5.2 AMD/Xilinx (Artix 7)

Configuration FFs LUTs BRAMs DSPs

Minimal

(Static Config, 32bit data)
- - - -

Maximal (AXI, 32bit data) 311 632 0 0

Table 15: Resource Usage AMD/Xilinx

ClkSignalGenerator Reference Manual 1.7 Page 49 of 55

6 Delivery Structure

AXI -- AXI library folder

 |-Library -- AXI library component sources

 |-Package -- AXI library package sources

CLK -- CLK library folder

 |-Core -- CLK library cores

 |-Doc -- CLK library cores documentations

 |-Driver -- CLK library driver

 |-Library -- CLK library component sources

 |-Package -- CLK library package sources

 |-Refdesign -- CLK library cores reference designs

 |-Testbench -- CLK library cores testbench sources and sim/log

COMMON -- COMMON library folder

 |-Library -- COMMON library component sources

 |-Package -- COMMON library package sources

PPS -- PPS library folder

|-Package -- PPS library package sources

SIM -- SIM library folder

 |-Doc -- SIM library command documentation

 |-Package -- SIM library package sources

 |-Testbench -- SIM library testbench template sources

 |-Tools -- SIM simulation tools

ClkSignalGenerator Reference Manual 1.7 Page 50 of 55

7 Testbench

The Signal Timestamper testbench consist of 3 parse/port types: AXI, CLK and SIG.

The Signal Input Port can check the generated signal from the Signal Output Port

which uses the same clock reference from the Clock Port as the Signal Timestamp-

er. For configuration and result checks an AXI read and write port is used. Also

interrupt handling can be done with this.

AXI0
AXI

READ
PORT

SIG
PARSER

AXI
PARSER

CLK
PARSER

SIG0
SIG

OUTPUT
PORT

SIG0
SIG

INPUT
PORT

Time SIGNAL
TIME

STAMP
(DUT)

AXI0
AXI

WRITE
PORT

SIG0
CLK

PORT

SIM

LOG

GENERAL
PARSER

Figure 11: Testbench Framework

For more information on the testbench framework check the Sim_ReferenceManual

documentation.

With the Sim parameter set the time base for timeouts are divided by 1000 to

100000 to speed up simulation time.

7.1 Run Testbench

1. Run the general script first

source XXX/SIM/Tools/source_with_args.tcl

2. Start the testbench with all test cases

src XXX/CLK/Testbench/Core/ClkSignalTimestamper/Script/run_Clk_SignalTimestamper_Tb.tcl

3. Check the log file LogFile1.txt in the

XXX/CLK/Testbench/Core/ClkSignalTimestamper/Log/ folder for simulation

results.

ClkSignalGenerator Reference Manual 1.7 Page 51 of 55

8 Reference Designs

The Signal Timestamper reference design contains a PLL to generate all necessary

clocks (cores are run at 50 MHz) and an instance of the Signal Timestamper IP core

and an instance of the Adjustable Counter Clock IP core (needs to be purchased

separately). Optionally it also contains an instance of a PPS Master Clock IP core

(has to be purchased separately). To instantiate the optional IP core, change the

corresponding generic (PpsMasterAvailable_Gen) to true via the tool specific

wizards.

The Reference Design is intended to run just standalone and show the instantia-

tion.Since now CPU is connected in the reference Design the timestamper will not

create any IRQs or snapshots The PPS Master Clock is used to create a PPS output

which is compensated for the output delay and has a configurable duty cycle, if not

available an uncompensated PPS is directly generated out of the MSB of the Time.

All generics can be adapted to the specific needs.

SIGNAL
TS

CLOCK
Adjustable Clock

PPS

AXI4 Lite Slave

Time &
Timer

SigRefDesignSigRefDesign

PPS
Master

Signal

AXI4 Lite Slave

AXI4 Lite Slave

PLL

Figure 12: Reference Design

8.1 Intel/Altera: Terasic SocKit

The SocKit board is an FPGA board from Terasic Inc. with a Cyclone V SoC FPGA

from Intel/Altera. (http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=205&No=816)

1. Open Quartus 16.x

2. Open Project

/CLK/Refdesign/Altera/SocKit/ClkSignalTimestamper/ClkSignalTimestampe

r.qpf

3. If the optional core PPS Master Clock is available add the files from the cor-

responding folders (PPS/Core, PPS/Library and PPS/Package)

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816

ClkSignalGenerator Reference Manual 1.7 Page 52 of 55

4. Change the generics (PpsMasterAvailable_Gen) in Quartus (in the settings

menu, not in VHDL) to true for the optional cores that are available.

5. Rerun implementation

6. Download to FPGA via JTAG

Figure 13: SocKit (source Terasic Inc)

For the ports on the HSMC connector the GPIO to HSMC adapter from Terasic Inc.

was used.

8.2 AMD/Xilinx: Digilent Arty

The Arty board is an FPGA board from Digilent Inc. with an Artix7 FPGA from

AMD/Xilinx. (http://store.digilentinc.com/arty-board-artix-7-fpga-development-

board-for-makers-and-hobbyists/

1. Open Vivado 2019.1.

Note: If a different Vivado version is used, see chapter 8.3.

2. Run TCL script

/CLK/Refdesign/Xilinx/Arty/ClkSignalTimestamper/ClkSignalTimestamper.t

cl

a. This has to be run only the first time and will create a new Vivado Pro-

ject

PPS-LED Alive-LED Soft Reset

PPS output

and Signal

input

on HSMC

http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/
http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/

ClkSignalGenerator Reference Manual 1.7 Page 53 of 55

3. If the project has been created before open the project and do not rerun the

project TCL

4. If the optional core PPS Master Clock is available add the files from the cor-

responding folders (PPS/Core, PPS/Library and PPS/Package) to the corre-

sponding Library (PpsLib).

5. Change the generics (PpsMasterAvailable_Gen) in Vivado (in the settings

menu, not in VHDL) to true for the optional cores that are available.

6. Rerun implementation

7. Download to FPGA via JTAG

Figure 14: Arty (source Digilent Inc)

PPS-LED Alive-LED Soft Reset

PPS output

Signal input

ClkSignalGenerator Reference Manual 1.7 Page 54 of 55

8.3 AMD/Xilinx: Vivado Version

The provided TCL script for creation of the reference-design project is targeting

AMD/Xilinx Vivado 2019.1.

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or

higher.

If a higher Vivado version is used, the following steps are recommended:

• Before executing the project creation TCL script, the script's references of

Vivado 2019 should be manually replaced to the current Vivado version. For

example, if version Vivado 2022 is used, then:

o The statement occurrences:

set_property flow "Vivado Synthesis 2019" $obj

shall be replaced by:

set_property flow "Vivado Synthesis 2022 $obj

o The statement occurrences:

set_property flow "Vivado Implementation 2019" $obj

shall be replaced by:

set_property flow "Vivado Implementation 2022" $obj

• After executing the project creation TCL script, the AMD/Xilinx IP cores,

such as the Clocking Wizard core, might be locked and a version upgrade

might be required. To do so:

1. At "Reports" menu, select "Report IP Status".

2. At the opened "IP Status" window, select "Upgrade Selected". The tool

will upgrade the version of the selected IP cores.

ClkSignalGenerator Reference Manual 1.7 Page 55 of 55

A List of tables

Table 1: Revision History ..4

Table 2: Definitions .. 7

Table 3: Abbreviations .. 7

Table 4: Parameters ... 29

Table 5: Clk_Time_Type .. 30

Table 6: Clk_SignalTimestamperStaticConfig_Type ... 30

Table 7: Clk_SignalTimestamperStaticConfigVal_Type ... 31

Table 8: Signal Timestamper ... 35

Table 9: Signal Timestamper ... 38

Table 10: Timestamp Buffer .. 40

Table 11: Registerset ... 44

Table 12: Clocks ... 46

Table 13: Resets ... 47

Table 14: Resource Usage Intel/Altera ... 48

Table 15: Resource Usage AMD/Xilinx ... 48

B List of figures

Figure 1: Context Block Diagram .. 8

Figure 2: Architecture Block Diagram ... 9

Figure 3: Counter Clock ... 11

Figure 4: Time Stamping ... 13

Figure 5: Signal Timestamper .. 31

Figure 6: Signal Timestamper ... 36

Figure 7: Timestamp Buffer ... 39

Figure 8: Registerset .. 41

Figure 9: Static Configuration .. 44

Figure 10: AXI Configuration .. 45

Figure 11: Testbench Framework .. 50

Figure 12: Reference Design .. 51

Figure 13: SocKit (source Terasic Inc) ... 52

Figure 14: Arty (source Digilent Inc) .. 53

	1 Introduction
	1.1 Context Overview
	1.2 Function
	1.3 Architecture

	2 Signal Timestamping Basics
	2.1 Digital Counter Clock
	2.2 Drift and Offset adjustments
	2.3 Signal Timestamping

	3 Register Set
	3.1 Register Overview
	3.2 Register Descriptions
	3.2.1 General
	3.2.1.1 CLK Signal Timestamper Control Register
	3.2.1.2 CLK Signal Timestamper Status Register
	3.2.1.3 CLK Signal Timestamper Polarity Register
	3.2.1.4 CLK Signal Timestamper Version Register
	3.2.1.5 CLK Signal Timestamper Cable Delay Register
	3.2.1.6 CLK Signal Timestamper Interrupt Register
	3.2.1.7 CLK Signal Timestamper Interrupt Mask Register
	3.2.1.8 CLK Signal Timestamper Timestamp Event Count Register
	3.2.1.9 CLK Signal Timestamper Timestamp Count Register
	3.2.1.10 CLK Signal Timestamper Time Value Low Register
	3.2.1.11 CLK Signal Timestamper Time Value High Register
	3.2.1.12 CLK Signal Timestamper Data Width Registers
	3.2.1.13 CLK Signal Timestamper Data Registers

	4 Design Description
	4.1 Top Level – Clk SignalTimestamper
	4.1.1.1 Parameters
	4.1.1.2 Structured Types
	4.1.1.2.1 Clk_Time_Type
	4.1.1.2.2 Clk_SignalTimestamperStaticConfig_Type
	4.1.1.2.3 Clk_SignalTimestamperStaticConfigVal_Type

	4.1.1.3 Entity Block Diagram
	4.1.1.4 Entity Description
	4.1.1.5 Entity Declaration

	4.2 Design Parts
	4.2.1 Signal Timestamper
	4.2.1.1 Entity Block Diagram
	4.2.1.2 Entity Description
	4.2.1.3 Entity Declaration

	4.2.2 Timestamp Buffer
	4.2.2.1 Entity Block Diagram
	4.2.2.2 Entity Description
	4.2.2.3 Entity Declaration

	4.2.3 Registerset
	4.2.3.1 Entity Block Diagram
	4.2.3.2 Entity Description
	4.2.3.3 Entity Declaration

	4.3 Configuration example
	4.3.1 Static Configuration
	4.3.2 AXI Configuration

	4.4 Clocking and Reset Concept
	4.4.1 Clocking
	4.4.2 Reset

	5 Resource Usage
	5.1 Intel/Altera (Cyclone V)
	5.2 AMD/Xilinx (Artix 7)
	5.3

	6 Delivery Structure
	7 Testbench
	7.1 Run Testbench

	8 Reference Designs
	8.1 Intel/Altera: Terasic SocKit
	8.2 AMD/Xilinx: Digilent Arty
	8.3 AMD/Xilinx: Vivado Version

